Suppr超能文献

无监督机器学习用于识别可分离的临床阿尔茨海默病亚群。

Unsupervised Machine Learning to Identify Separable Clinical Alzheimer's Disease Sub-Populations.

作者信息

Prakash Jayant, Wang Velda, Quinn Robert E, Mitchell Cassie S

机构信息

Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.

Department of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Brain Sci. 2021 Jul 23;11(8):977. doi: 10.3390/brainsci11080977.

Abstract

Heterogeneity among Alzheimer's disease (AD) patients confounds clinical trial patient selection and therapeutic efficacy evaluation. This work defines separable AD clinical sub-populations using unsupervised machine learning. Clustering (t-SNE followed by k-means) of patient features and association rule mining (ARM) was performed on the ADNIMERGE dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Patient sociodemographics, brain imaging, biomarkers, cognitive tests, and medication usage were included for analysis. Four AD clinical sub-populations were identified using between-cluster mean fold changes [cognitive performance, brain volume]: cluster-1 represented least severe disease [+17.3, +13.3]; cluster-0 [-4.6, +3.8] and cluster-3 [+10.8, -4.9] represented mid-severity sub-populations; cluster-2 represented most severe disease [-18.4, -8.4]. ARM assessed frequently occurring pharmacologic substances within the 4 sub-populations. No drug class was associated with the least severe AD (cluster-1), likely due to lesser antecedent disease. Anti-hyperlipidemia drugs associated with cluster-0 (mid-severity, higher volume). Interestingly, antioxidants vitamin C and E associated with cluster-3 (mid-severity, higher cognition). Anti-depressants like Zoloft associated with most severe disease (cluster-2). Vitamin D is protective for AD, but ARM identified significant underutilization across all AD sub-populations. Identification and feature characterization of four distinct AD sub-population "clusters" using standard clinical features enhances future clinical trial selection criteria and cross-study comparative analysis.

摘要

阿尔茨海默病(AD)患者之间的异质性使临床试验患者的选择和治疗效果评估变得复杂。这项研究使用无监督机器学习来定义可分离的AD临床亚群。对来自阿尔茨海默病神经影像倡议(ADNI)的ADNIMERGE数据集进行了患者特征聚类(先进行t-SNE然后进行k均值聚类)和关联规则挖掘(ARM)。纳入患者的社会人口统计学、脑成像、生物标志物、认知测试和药物使用情况进行分析。使用聚类间平均倍数变化[认知表现、脑容量]确定了四个AD临床亚群:聚类1代表病情最轻的疾病[+17.3,+13.3];聚类0[-4.6,+3.8]和聚类3[+10.8,-4.9]代表中度病情亚群;聚类2代表病情最严重的疾病[-18.4,-8.4]。ARM评估了这4个亚群中频繁出现的药物物质。没有药物类别与病情最轻的AD(聚类1)相关,可能是因为前期疾病较少。与聚类0(中度病情,脑容量较大)相关的抗高脂血症药物。有趣的是,抗氧化剂维生素C和E与聚类3(中度病情,认知较高)相关。像左洛复这样的抗抑郁药与最严重的疾病(聚类2)相关。维生素D对AD有保护作用,但ARM发现所有AD亚群中维生素D的使用均明显不足。使用标准临床特征对四个不同的AD亚群“聚类”进行识别和特征表征,可增强未来临床试验的选择标准和跨研究比较分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a44/8392842/007cc107d1c7/brainsci-11-00977-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验