Suppr超能文献

用于阿尔茨海默病诊断的多层多视图分类

Multi-Layer Multi-View Classification for Alzheimer's Disease Diagnosis.

作者信息

Zhang Changqing, Adeli Ehsan, Zhou Tao, Chen Xiaobo, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, USA.

School of Computer Science and Technology, Tianjin University, Tianjin, China.

出版信息

Proc AAAI Conf Artif Intell. 2018 Feb;2018:4406-4413.

Abstract

In this paper, we propose a novel multi-view learning method for Alzheimer's Disease (AD) diagnosis, using neuroimaging and genetics data. Generally, there are several major challenges associated with traditional classification methods on multi-source imaging and genetics data. First, the correlation between the extracted imaging features and class labels is generally complex, which often makes the traditional linear models ineffective. Second, medical data may be collected from different sources (i.e., multiple modalities of neuroimaging data, clinical scores or genetics measurements), therefore, how to effectively exploit the complementarity among multiple views is of great importance. In this paper, we propose a approach, which regards the multi-view input as the first layer, and constructs a latent representation to explore the complex correlation between the features and class labels. This captures the high-order complementarity among different views, as we exploit the underlying information with a low-rank tensor regularization. Intrinsically, our formulation elegantly explores the nonlinear correlation together with complementarity among different views, and thus improves the accuracy of classification. Finally, the minimization problem is solved by the Alternating Direction Method of Multipliers (ADMM). Experimental results on Alzheimers Disease Neuroimaging Initiative (ADNI) data sets validate the effectiveness of our proposed method.

摘要

在本文中,我们提出了一种用于阿尔茨海默病(AD)诊断的新型多视图学习方法,该方法使用神经影像学和遗传学数据。一般来说,传统的多源成像和遗传学数据分类方法存在几个主要挑战。首先,提取的成像特征与类别标签之间的相关性通常很复杂,这常常使传统的线性模型失效。其次,医学数据可能来自不同来源(即神经影像学数据的多种模态、临床评分或遗传学测量),因此,如何有效利用多视图之间的互补性非常重要。在本文中,我们提出了一种方法,将多视图输入视为第一层,并构建一个潜在表示来探索特征与类别标签之间的复杂相关性。这捕捉了不同视图之间的高阶互补性,因为我们使用低秩张量正则化来挖掘潜在信息。本质上,我们的公式优雅地探索了不同视图之间的非线性相关性以及互补性,从而提高了分类的准确性。最后,通过交替方向乘子法(ADMM)解决最小化问题。在阿尔茨海默病神经影像学倡议(ADNI)数据集上的实验结果验证了我们提出的方法的有效性。

相似文献

2
INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL MULTI-VIEW REPRESENTATION LEARNING.基于潜在部分多视图表征学习的婴儿大脑发育预测
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1048-1051. doi: 10.1109/ISBI.2018.8363751. Epub 2018 May 24.
7
Multi-view Classification for Identification of Alzheimer's Disease.用于阿尔茨海默病识别的多视图分类
Mach Learn Med Imaging. 2015;9352:255-262. doi: 10.1007/978-3-319-24888-2_31. Epub 2015 Oct 2.

引用本文的文献

4
Multi-modal intermediate integrative methods in neuropsychiatric disorders: A review.神经精神疾病中的多模态中间整合方法:综述
Comput Struct Biotechnol J. 2022 Nov 8;20:6149-6162. doi: 10.1016/j.csbj.2022.11.008. eCollection 2022.

本文引用的文献

2
Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.多模态课程学习在半监督图像分类中的应用。
IEEE Trans Image Process. 2016 Jul;25(7):3249-3260. doi: 10.1109/TIP.2016.2563981. Epub 2016 May 5.
3
Matrix Completion for Weakly-Supervised Multi-Label Image Classification.基于矩阵填充的弱监督多标签图像分类方法
IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):121-35. doi: 10.1109/TPAMI.2014.2343234.
5
Multi-modality canonical feature selection for Alzheimer's disease diagnosis.用于阿尔茨海默病诊断的多模态规范特征选择
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):162-9. doi: 10.1007/978-3-319-10470-6_21.
7
Robust recovery of subspace structures by low-rank representation.基于低秩表示的子空间结构鲁棒恢复。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):171-84. doi: 10.1109/TPAMI.2012.88.
8
Tensor completion for estimating missing values in visual data.张量完成在视觉数据中估计缺失值。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):208-20. doi: 10.1109/TPAMI.2012.39.
10
The generalized LASSO.广义套索算法
IEEE Trans Neural Netw. 2004 Jan;15(1):16-28. doi: 10.1109/TNN.2003.809398.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验