Suppr超能文献

CD8 + T细胞可控制受感染小鼠肌肉骨骼组织中的罗斯河病毒感染。

CD8+ T cells control Ross River virus infection in musculoskeletal tissues of infected mice.

作者信息

Burrack Kristina S, Montgomery Stephanie A, Homann Dirk, Morrison Thomas E

机构信息

Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;

Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;

出版信息

J Immunol. 2015 Jan 15;194(2):678-89. doi: 10.4049/jimmunol.1401833. Epub 2014 Dec 8.

Abstract

Ross River virus (RRV), chikungunya virus, and related alphaviruses cause debilitating polyarthralgia and myalgia. Mouse models of RRV and chikungunya virus have demonstrated a role for the adaptive immune response in the control of these infections. However, questions remain regarding the role for T cells in viral control, including the magnitude, location, and dynamics of CD8(+) T cell responses. To address these questions, we generated a recombinant RRV expressing the H-2(b)-restricted glycoprotein 33 (gp33) determinant derived from the glycoprotein of lymphocytic choriomeningitis virus. Using tetramers, we tracked gp33-specific CD8(+) T cells during RRV-lymphocytic choriomeningitis virus infection. We found that acute RRV infection induces activation of CD8(+) T cell responses in lymphoid and musculoskeletal tissues that peak from 10-14 d postinoculation, suggesting that CD8(+) T cells contribute to control of acute RRV infection. Mice genetically deficient for CD8(+) T cells or wild-type mice depleted of CD8(+) T cells had elevated RRV loads in skeletal muscle tissue, but not joint-associated tissues, at 14 d postinoculation, suggesting that the ability of CD8(+) T cells to control RRV infection is tissue dependent. Finally, adoptively transferred T cells were capable of reducing RRV loads in skeletal muscle tissue of Rag1(-/-) mice, indicating that T cells can contribute to the control of RRV infection in the absence of B cells and Ab. Collectively, these data demonstrate a role for T cells in the control of RRV infection and suggest that the antiviral capacity of T cells is controlled in a tissue-specific manner.

摘要

罗斯河病毒(RRV)、基孔肯雅病毒及相关甲病毒可引起使人虚弱的多关节痛和肌痛。RRV和基孔肯雅病毒的小鼠模型已证明适应性免疫反应在控制这些感染中发挥作用。然而,关于T细胞在病毒控制中的作用仍存在问题,包括CD8(+) T细胞反应的强度、位置和动态。为了解决这些问题,我们构建了一种重组RRV,其表达源自淋巴细胞性脉络丛脑膜炎病毒糖蛋白的H-2(b)限制性糖蛋白33(gp33)决定簇。利用四聚体,我们在RRV-淋巴细胞性脉络丛脑膜炎病毒感染期间追踪gp33特异性CD8(+) T细胞。我们发现,急性RRV感染可诱导淋巴组织和肌肉骨骼组织中CD8(+) T细胞反应的激活,在接种后10 - 14天达到峰值,这表明CD8(+) T细胞有助于控制急性RRV感染。在接种后14天,CD8(+) T细胞基因缺陷的小鼠或耗尽CD8(+) T细胞的野生型小鼠,其骨骼肌组织中的RRV载量升高,但关节相关组织中的RRV载量未升高,这表明CD8(+) T细胞控制RRV感染的能力具有组织依赖性。最后,过继转移的T细胞能够降低Rag1(-/-)小鼠骨骼肌组织中的RRV载量,这表明在没有B细胞和抗体的情况下,T细胞可有助于控制RRV感染。总体而言,这些数据证明了T细胞在控制RRV感染中的作用,并表明T细胞的抗病毒能力是以组织特异性方式受到调控的。

相似文献

1
CD8+ T cells control Ross River virus infection in musculoskeletal tissues of infected mice.
J Immunol. 2015 Jan 15;194(2):678-89. doi: 10.4049/jimmunol.1401833. Epub 2014 Dec 8.
2
Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease.
J Virol. 2007 May;81(10):5132-43. doi: 10.1128/JVI.02799-06. Epub 2007 Feb 21.
4
Inflammatory monocytes mediate control of acute alphavirus infection in mice.
PLoS Pathog. 2017 Dec 15;13(12):e1006748. doi: 10.1371/journal.ppat.1006748. eCollection 2017 Dec.
5
Attenuating mutations in nsP1 reveal tissue-specific mechanisms for control of Ross River virus infection.
J Virol. 2014 Apr;88(7):3719-32. doi: 10.1128/JVI.02609-13. Epub 2014 Jan 15.
7
Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells.
PLoS Pathog. 2015 Oct 5;11(10):e1005191. doi: 10.1371/journal.ppat.1005191. eCollection 2015 Oct.
8
Effects of an In-Frame Deletion of the 6k Gene Locus from the Genome of Ross River Virus.
J Virol. 2016 Mar 28;90(8):4150-4159. doi: 10.1128/JVI.03192-15. Print 2016 Apr.
9
Complement receptor 3 promotes severe ross river virus-induced disease.
J Virol. 2008 Nov;82(22):11263-72. doi: 10.1128/JVI.01352-08. Epub 2008 Sep 10.
10

引用本文的文献

1
Insect-specific virus platforms for arbovirus vaccine development.
Front Immunol. 2025 Mar 14;16:1521104. doi: 10.3389/fimmu.2025.1521104. eCollection 2025.
2
Interaction of the endogenous antibody response with activating FcγRs enhance control of Mayaro virus through monocytes.
PLoS Pathog. 2025 Feb 24;21(2):e1012944. doi: 10.1371/journal.ppat.1012944. eCollection 2025 Feb.
4
Activating FcγRs on monocytes are necessary for optimal Mayaro virus clearance.
bioRxiv. 2024 Jul 24:2024.07.23.604823. doi: 10.1101/2024.07.23.604823.
5
Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions.
Front Microbiol. 2024 Jul 22;15:1413250. doi: 10.3389/fmicb.2024.1413250. eCollection 2024.
6
Generating prophylactic immunity against arboviruses in vertebrates and invertebrates.
Nat Rev Immunol. 2024 Sep;24(9):621-636. doi: 10.1038/s41577-024-01016-6. Epub 2024 Apr 3.
7
Chikungunya virus infection disrupts MHC-I antigen presentation via nonstructural protein 2.
PLoS Pathog. 2024 Mar 14;20(3):e1011794. doi: 10.1371/journal.ppat.1011794. eCollection 2024 Mar.
8
Chikungunya virus infection disrupts MHC-I antigen presentation via nonstructural protein 2.
bioRxiv. 2023 Nov 4:2023.11.03.565436. doi: 10.1101/2023.11.03.565436.
9
Evolution and immunopathology of chikungunya virus informs therapeutic development.
Dis Model Mech. 2023 Apr 1;16(4). doi: 10.1242/dmm.049804. Epub 2023 Apr 4.
10

本文引用的文献

1
Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe.
Euro Surveill. 2014 Apr 3;19(13):20759. doi: 10.2807/1560-7917.es2014.19.13.20759.
2
Chikungunya in the Americas.
Lancet. 2014 Feb 8;383(9916):514. doi: 10.1016/S0140-6736(14)60185-9.
3
Attenuating mutations in nsP1 reveal tissue-specific mechanisms for control of Ross River virus infection.
J Virol. 2014 Apr;88(7):3719-32. doi: 10.1128/JVI.02609-13. Epub 2014 Jan 15.
6
Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response.
J Virol. 2013 Dec;87(24):13878-88. doi: 10.1128/JVI.02666-13. Epub 2013 Oct 16.
7
Outbreak of chikungunya virus infection, Vanimo, Papua New Guinea.
Emerg Infect Dis. 2013;19(9):1535-8. doi: 10.3201/eid1909.130130.
10
An essential role of antibodies in the control of Chikungunya virus infection.
J Immunol. 2013 Jun 15;190(12):6295-302. doi: 10.4049/jimmunol.1300304. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验