Gaub Benjamin M, Berry Michael H, Holt Amy E, Reiner Andreas, Kienzler Michael A, Dolgova Natalia, Nikonov Sergei, Aguirre Gustavo D, Beltran William A, Flannery John G, Isacoff Ehud Y
Helen Wills Neuroscience Institute, and.
Departments of Molecular and Cell Biology and.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5574-83. doi: 10.1073/pnas.1414162111. Epub 2014 Dec 8.
Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0(460)). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0(460) was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0(460) was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0(460) in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0(460) in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0(460) was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation.
大多数遗传性失明是由导致光感受器细胞死亡但保留视网膜第二级和第三级神经元的突变引起的。先前研究表明,在视网膜变性(rd1)失明小鼠模型的视网膜神经节细胞(RGC)中表达光门控兴奋性哺乳动物离子通道光门控离子型谷氨酸受体(LiGluR),在紫外线刺激下可恢复一些视觉功能。在此,我们报告通过使用第二代LiGluR光开关马来酰亚胺 - 偶氮苯 - 谷氨酸0(在460nm处具有峰值效率,即MAG0(460)),在啮齿动物和犬类失明模型中实现了可见光下视网膜功能的恢复。在失明的rd1小鼠中,当LiGluR - MAG0(460)靶向RGC时,视网膜外植体的多电极阵列记录显示出强烈且均匀的光诱发放电;当LiGluR - MAG0(460)靶向ON双极细胞(ON - BCs)时,RGC中呈现出强烈但多样的活动模式。rd1小鼠的RGC或ON - BCs中的LiGluR - MAG0(460)恢复了先天的避光行为,并使小鼠能够在联想学习任务中区分不同的光时间模式。在视锥视杆营养不良犬类失明模型中,RGC中的LiGluR - MAG0(460)恢复了视网膜外植体对光的强烈反应,并且LiGluR和MAG0(460)的玻璃体内递送在体内具有良好的耐受性。光感受器退化的大型和小型动物模型的结果为临床转化提供了一条途径。