Suppr超能文献

使用离子迁移谱法进行呼气分析以检测肺癌。

Exhaled breath analysis for lung cancer detection using ion mobility spectrometry.

作者信息

Handa Hiroshi, Usuba Ayano, Maddula Sasidhar, Baumbach Jörg Ingo, Mineshita Masamichi, Miyazawa Teruomi

机构信息

Division of Respiratory and Infectious Diseases, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan.

B&S Analytik, BioMedicalCenter, Dortmund, Germany.

出版信息

PLoS One. 2014 Dec 9;9(12):e114555. doi: 10.1371/journal.pone.0114555. eCollection 2014.

Abstract

BACKGROUND

Conventional methods for lung cancer detection including computed tomography (CT) and bronchoscopy are expensive and invasive. Thus, there is still a need for an optimal lung cancer detection technique.

METHODS

The exhaled breath of 50 patients with lung cancer histologically proven by bronchoscopic biopsy samples (32 adenocarcinomas, 10 squamous cell carcinomas, 8 small cell carcinomas), were analyzed using ion mobility spectrometry (IMS) and compared with 39 healthy volunteers. As a secondary assessment, we compared adenocarcinoma patients with and without epidermal growth factor receptor (EGFR) mutation.

RESULTS

A decision tree algorithm could separate patients with lung cancer including adenocarcinoma, squamous cell carcinoma and small cell carcinoma. One hundred-fifteen separated volatile organic compound (VOC) peaks were analyzed. Peak-2 noted as n-Dodecane using the IMS database was able to separate values with a sensitivity of 70.0% and a specificity of 89.7%. Incorporating a decision tree algorithm starting with n-Dodecane, a sensitivity of 76% and specificity of 100% was achieved. Comparing VOC peaks between adenocarcinoma and healthy subjects, n-Dodecane was able to separate values with a sensitivity of 81.3% and a specificity of 89.7%. Fourteen patients positive for EGFR mutation displayed a significantly higher n-Dodecane than for the 14 patients negative for EGFR (p<0.01), with a sensitivity of 85.7% and a specificity of 78.6%.

CONCLUSION

In this prospective study, VOC peak patterns using a decision tree algorithm were useful in the detection of lung cancer. Moreover, n-Dodecane analysis from adenocarcinoma patients might be useful to discriminate the EGFR mutation.

摘要

背景

包括计算机断层扫描(CT)和支气管镜检查在内的传统肺癌检测方法昂贵且具有侵入性。因此,仍然需要一种最佳的肺癌检测技术。

方法

对50例经支气管镜活检样本组织学证实为肺癌的患者(32例腺癌、10例鳞状细胞癌、8例小细胞癌)的呼出气体进行离子迁移谱(IMS)分析,并与39名健康志愿者进行比较。作为次要评估,我们比较了有和没有表皮生长因子受体(EGFR)突变的腺癌患者。

结果

决策树算法可以区分包括腺癌、鳞状细胞癌和小细胞癌在内的肺癌患者。分析了115个分离出的挥发性有机化合物(VOC)峰。使用IMS数据库将峰-2标记为正十二烷,其能够以70.0%的灵敏度和89.7%的特异性区分数值。采用从正十二烷开始的决策树算法,灵敏度达到76%,特异性达到100%。比较腺癌患者和健康受试者之间的VOC峰,正十二烷能够以81.3%的灵敏度和89.7%的特异性区分数值。14例EGFR突变阳性患者的正十二烷含量显著高于14例EGFR阴性患者(p<0.01),灵敏度为85.7%,特异性为78.6%。

结论

在这项前瞻性研究中,使用决策树算法的VOC峰模式对肺癌检测有用。此外,对腺癌患者进行正十二烷分析可能有助于鉴别EGFR突变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验