Suppr超能文献

基于呼气分析的肺癌 VOC 生物标志物鉴定及预测模型构建:一项探索性研究方案

VOC biomarkers identification and predictive model construction for lung cancer based on exhaled breath analysis: research protocol for an exploratory study.

机构信息

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Research Center of Analytical Instrumentation, The College of Life Sciences, Sichuan University, Chengdu, China.

出版信息

BMJ Open. 2019 Aug 8;9(8):e028448. doi: 10.1136/bmjopen-2018-028448.

Abstract

INTRODUCTION

Lung cancer is the most common cancer and the leading cause of cancer death in China, as well as in the world. Late diagnosis is the main obstacle to improving survival. Currently, early detection methods for lung cancer have many limitations, for example, low specificity, risk of radiation exposure and overdiagnosis. Exhaled breath analysis is one of the most promising non-invasive techniques for early detection of lung cancer. The aim of this study is to identify volatile organic compound (VOC) biomarkers in lung cancer and to construct a predictive model for lung cancer based on exhaled breath analysis.

METHODS AND ANALYSIS

The study will recruit 389 lung cancer patients in one cancer centre and 389 healthy subjects in two lung cancer screening centres. Bio-VOC breath sampler and Tedlar bag will be used to collect breath samples. Gas chromatography-mass spectrometry coupled with solid phase microextraction technique will be used to analyse VOCs in exhaled breath. VOC biomarkers with statistical significance and showing abilities to discriminate lung cancer patients from healthy subjects will be selected for the construction of predictive model for lung cancer.

ETHICS AND DISSEMINATION

The study was approved by the Ethics Committee of Sichuan Cancer Hospital on 6 April 2017 (No. SCCHEC-02-2017-011). The results of this study will be disseminated in presentations at academic conferences, publications in peer-reviewed journals and the news media.

TRIAL REGISTRATION NUMBER

ChiCTR-DOD-17011134; Pre-results.

摘要

简介

肺癌是中国乃至全球最常见的癌症和癌症死亡的主要原因。诊断过晚是提高生存率的主要障碍。目前,肺癌的早期检测方法存在许多局限性,例如特异性低、辐射暴露风险和过度诊断。呼气分析是肺癌早期检测最有前途的非侵入性技术之一。本研究旨在鉴定肺癌中的挥发性有机化合物(VOC)生物标志物,并基于呼气分析构建肺癌预测模型。

方法与分析

该研究将在一家癌症中心招募 389 名肺癌患者和两家肺癌筛查中心的 389 名健康受试者。将使用生物-VOC 呼气采样器和 Tedlar 袋收集呼气样本。气相色谱-质谱联用固相微萃取技术将用于分析呼气中的 VOCs。选择具有统计学意义并能区分肺癌患者和健康受试者的 VOC 生物标志物,用于构建肺癌预测模型。

伦理与传播

该研究于 2017 年 4 月 6 日获得四川癌症医院伦理委员会的批准(编号:SCCHEC-02-2017-011)。本研究的结果将以学术会议报告、同行评议期刊发表和新闻媒体传播的形式公布。

注册号

ChiCTR-DOD-17011134;预结果。

相似文献

6
Volatile signature for the early diagnosis of lung cancer.用于肺癌早期诊断的挥发性特征。
J Breath Res. 2016 Feb 9;10(1):016007. doi: 10.1088/1752-7155/10/1/016007.

引用本文的文献

7
The role of Exosomal miRNAs in cancer.外泌体 miRNAs 在癌症中的作用。
J Transl Med. 2022 Jan 3;20(1):6. doi: 10.1186/s12967-021-03215-4.

本文引用的文献

1
Exhaled breath testing - A tool for the clinician and researcher.呼气测试——临床医生和研究人员的工具。
Paediatr Respir Rev. 2019 Feb;29:37-41. doi: 10.1016/j.prrv.2018.05.002. Epub 2018 May 17.
3
VOC breath biomarkers in lung cancer.肺癌中的挥发性有机化合物呼吸生物标志物
Clin Chim Acta. 2016 Aug 1;459:5-9. doi: 10.1016/j.cca.2016.05.013. Epub 2016 May 21.
4
Screening for lung cancer: A systematic review and meta-analysis.肺癌筛查:一项系统评价与荟萃分析。
Prev Med. 2016 Aug;89:301-314. doi: 10.1016/j.ypmed.2016.04.015. Epub 2016 Apr 26.
6
Cancer statistics in China, 2015.《中国癌症统计数据 2015》
CA Cancer J Clin. 2016 Mar-Apr;66(2):115-32. doi: 10.3322/caac.21338. Epub 2016 Jan 25.
8
Lung Cancer Statistics.肺癌统计数据。
Adv Exp Med Biol. 2016;893:1-19. doi: 10.1007/978-3-319-24223-1_1.
10
Epidemiology of lung cancer in China.中国肺癌流行病学。
Thorac Cancer. 2015 Mar;6(2):209-15. doi: 10.1111/1759-7714.12169. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验