Suppr超能文献

离子迁移谱数据代谢组学数据分析的计算方法——综述现状

Computational methods for metabolomic data analysis of ion mobility spectrometry data-reviewing the state of the art.

作者信息

Hauschild Anne-Christin, Schneider Till, Pauling Josch, Rupp Kathrin, Jang Mi, Baumbach Jörg Ingo, Baumbach Jan

机构信息

Computational Systems Biology Group, Max Planck Institute for Informatics, D-66123, Saarbrücken, Germany.

Department Microfluidics and Clinical Diagnostics, KIST Europe-Korea Institute of Science and Technology Europe, Campus E7.1, D-66123, Saarbrücken, Germany.

出版信息

Metabolites. 2012 Oct 16;2(4):733-55. doi: 10.3390/metabo2040733.

Abstract

Ion mobility spectrometry combined with multi-capillary columns (MCC/IMS) is a well known technology for detecting volatile organic compounds (VOCs). We may utilize MCC/IMS for scanning human exhaled air, bacterial colonies or cell lines, for example. Thereby we gain information about the human health status or infection threats. We may further study the metabolic response of living cells to external perturbations. The instrument is comparably cheap, robust and easy to use in every day practice. However, the potential of the MCC/IMS methodology depends on the successful application of computational approaches for analyzing the huge amount of emerging data sets. Here, we will review the state of the art and highlight existing challenges. First, we address methods for raw data handling, data storage and visualization. Afterwards we will introduce de-noising, peak picking and other pre-processing approaches. We will discuss statistical methods for analyzing correlations between peaks and diseases or medical treatment. Finally, we study up-to-date machine learning techniques for identifying robust biomarker molecules that allow classifying patients into healthy and diseased groups. We conclude that MCC/IMS coupled with sophisticated computational methods has the potential to successfully address a broad range of biomedical questions. While we can solve most of the data pre-processing steps satisfactorily, some computational challenges with statistical learning and model validation remain.

摘要

离子迁移谱联用多毛细管柱(MCC/IMS)是一种用于检测挥发性有机化合物(VOCs)的知名技术。例如,我们可以利用MCC/IMS对人体呼出的气体、细菌菌落或细胞系进行扫描。由此,我们可以获取有关人类健康状况或感染威胁的信息。我们还可以进一步研究活细胞对外部干扰的代谢反应。该仪器相对便宜、坚固耐用且在日常实践中易于使用。然而,MCC/IMS方法的潜力取决于计算方法在分析大量新出现数据集方面的成功应用。在此,我们将回顾当前的技术水平并突出现有挑战。首先,我们探讨原始数据处理、数据存储和可视化的方法。之后,我们将介绍去噪、峰检测和其他预处理方法。我们将讨论用于分析峰与疾病或治疗之间相关性的统计方法。最后,我们研究用于识别能够将患者分为健康和患病组的强大生物标志物分子的最新机器学习技术。我们得出结论,MCC/IMS与复杂的计算方法相结合有潜力成功解决广泛的生物医学问题。虽然我们可以令人满意地解决大多数数据预处理步骤,但统计学习和模型验证方面仍存在一些计算挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e8d/3901238/27860855d64e/metabolites-02-00733-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验