Suppr超能文献

图论脑网络指标的可重复性:一项系统综述。

Reproducibility of graph-theoretic brain network metrics: a systematic review.

作者信息

Welton Thomas, Kent Daniel A, Auer Dorothee P, Dineen Robert A

机构信息

Sir Peter Mansfield Imaging Centre, University of Nottingham , Nottingham, United Kingdom .

出版信息

Brain Connect. 2015 May;5(4):193-202. doi: 10.1089/brain.2014.0313. Epub 2015 Jan 9.

Abstract

This systematic review aimed to assess the reproducibility of graph-theoretic brain network metrics. Primary research studies of test-retest reliability conducted on healthy human subjects were included that quantified test-retest reliability using either the intraclass correlation coefficient (ICC) or the coefficient of variance. The MEDLINE, Web of Knowledge, Google Scholar, and OpenGrey databases were searched up to February 2014. Risk of bias was assessed with 10 criteria weighted toward methodological quality. Twenty-three studies were included in the review (n=499 subjects) and evaluated for various characteristics, including sample size (5-45), retest interval (<1 h to >1 year), acquisition method, and test-retest reliability scores. For at least one metric, ICCs reached the fair range (ICC 0.40-0.59) in one study, the good range (ICC 0.60-0.74) in five studies, and the excellent range (ICC>0.74) in 16 studies. Heterogeneity of methods prevented further quantitative analysis. Reproducibility was good overall. For the metrics having three or more ICCs reported for both functional and structural networks, six of seven were higher in structural networks, indicating that structural networks may be more reliable over time. The authors were also able to highlight and discuss a number of methodological factors affecting reproducibility.

摘要

本系统评价旨在评估脑网络图谱理论指标的可重复性。纳入了对健康人类受试者进行的重测信度的初步研究,这些研究使用组内相关系数(ICC)或方差系数对重测信度进行了量化。检索了截至2014年2月的MEDLINE、Web of Knowledge、谷歌学术和OpenGrey数据库。采用10项侧重于方法学质量的标准评估偏倚风险。本评价纳入了23项研究(n = 499名受试者),并对各种特征进行了评估,包括样本量(5 - 45)、重测间隔(<1小时至>1年)、采集方法和重测信度得分。对于至少一项指标,在一项研究中ICC达到一般范围(ICC 0.40 - 0.59),在五项研究中达到良好范围(ICC 0.60 - 0.74),在16项研究中达到优秀范围(ICC > 0.74)。方法的异质性阻碍了进一步的定量分析。总体而言,可重复性良好。对于功能和结构网络均报告了三个或更多ICC的指标,七个指标中有六个在结构网络中更高,这表明结构网络可能随时间推移更可靠。作者还能够突出并讨论一些影响可重复性的方法学因素。

相似文献

引用本文的文献

本文引用的文献

2
Reproducibility of graph metrics of human brain structural networks.人脑结构网络图度量的可重复性。
Front Neuroinform. 2014 May 7;8:46. doi: 10.3389/fninf.2014.00046. eCollection 2014.
3
Altered global brain signal in schizophrenia.精神分裂症患者大脑整体信号改变。
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7438-43. doi: 10.1073/pnas.1405289111. Epub 2014 May 5.
5
Altered resting state brain networks in Parkinson's disease.帕金森病患者的静息态脑网络改变。
PLoS One. 2013 Oct 28;8(10):e77336. doi: 10.1371/journal.pone.0077336. eCollection 2013.
7
Test-retest reliability of structural brain networks from diffusion MRI.弥散磁共振成像结构脑网络的重测信度。
Neuroimage. 2014 Feb 1;86:231-43. doi: 10.1016/j.neuroimage.2013.09.054. Epub 2013 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验