Suppr超能文献

用于旁路移植应用的仿生修饰临床级POSS-PCU纳米复合聚合物:内皮细胞粘附和血液相容性的初步评估

Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.

作者信息

Solouk Atefeh, Cousins Brian G, Mirahmadi Fereshteh, Mirzadeh Hamid, Nadoushan Mohammad Reza Jalali, Shokrgozar Mohammad Ali, Seifalian Alexander M

机构信息

Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.

Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, UK.

出版信息

Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:400-8. doi: 10.1016/j.msec.2014.10.065. Epub 2014 Oct 24.

Abstract

BACKGROUND

To date, there are no small internal diameter (<5mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation.

METHODS

POSS-PCU was activated by plasma treatment in air/O2 to from hydroperoxides (-OH, -OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests.

RESULTS

Poly-AA content on each of the plasma treated nanocomposite films increased on Low, Med and High samples due to more carboxylic acid (-COOH) groups at the surface forming amide (-NH2) bonds. The amount of -COOH groups on each of the Low, Med and High nanocomposites correlated with Poly-AA grafting density at 14.7±0.9, 18.9±0.9, and 34.2±2.4 μg/cm(2). Immobilisation of collagen type I on to nanocomposite surface was also found to increase significantly on the Low, Med and High samples from 22±4, 150±15, and 219±17 μg/cm(2), respectively. The level of ECs and their adhesion efficiency were improved with increasing amounts of grafted collagen I. The maximum adhesion of ECs was found on the highest collagen type I coated nanocomposites. Platelet adhesion and activation also increased with increasing collagen density. The obtained HR values for all of the treated samples were well within the acceptable standards for biomaterials (<5% HR).

CONCLUSION

Poly-AA-g-POSS-PCU surfaces offer binding sites for the covalent bonding of collagen type I and other biomolecules such as fibronectin by exposure of RGD cell binding domains and growth factors using EDC cross-linking chemistry. Collagen type I modification can yield accelerated EC growth and enhance the endothelialisation of POSS-PCU nanocomposites, and the amount of immobilised collagen can control the level of platelet adhesion on functionalized POSS-PCU via TSPT and poly acrylic acid (poly-AA) treatment. Such surface modification procedures of polymeric surfaces can improve the patency rate of POSS-PCU nanocomposites as vascular bypass grafts in the preparation of a range of medical devices ready for pre-clinical and in vivo evaluation.

摘要

背景

迄今为止,由于血栓形成和不必要的细胞增殖导致的高失败率,尚无获得美国食品药品监督管理局(FDA)批准用于临床的小内径(<5mm)血管移植物。增强生物工程移植物的理想条件是旁路移植物的血液接触内腔完全被内皮细胞(EC)覆盖。作为实现这一目标的策略,我们假设通过将生物分子固定在多面体低聚倍半硅氧烷-聚(碳酸酯-脲)聚氨酯(POSS-PCU)纳米复合聚合物表面,该聚合物含有与细胞外基质(ECM)类似的细胞表面受体的结合位点和配体,将对EC的附着和增殖产生积极影响。由于POSS-PCU的表面是惰性的,不直接适合生物分子的固定,等离子体接枝聚合是一种合适的方法来改变表面性质,以准备固定和生物功能化。

方法

通过在空气/氧气中进行等离子体处理使POSS-PCU活化以形成氢过氧化物(-OH,-OOH),然后使用两步等离子体处理(TSPT)工艺通过30%丙烯酸溶液(聚-AA)的等离子体聚合进行羧化。使用EDC化学通过两步化学反应将ECM的主要成分I型胶原共价固定以模拟ECM结构至EC(5mg/ml)。使用甲苯胺蓝染色和Bradford测定法确认聚-AA和胶原成功固定在纳米复合材料上。未处理的POSS-PCU用作简单对照。通过接触角(θ)测量、扫描电子显微镜(SEM)、原子力显微镜(AFM)、动态机械热分析(DMTA)、EC粘附和增殖,随后进行血小板粘附和溶血率(HR)测试,评估胶原接枝对POSS-PCU的物理、机械和生物学性质的影响。

结果

由于表面形成酰胺(-NH2)键的更多羧酸(-COOH)基团,低、中、高样品上每个经等离子体处理的纳米复合膜上的聚-AA含量增加。低、中、高纳米复合材料上每个的-COOH基团数量与聚-AA接枝密度相关,分别为14.7±0.9、18.9±0.9和34.2±2.4μg/cm²。还发现I型胶原固定在纳米复合材料表面上在低、中、高样品上也显著增加,分别从22±4、150±15和219±17μg/cm²增加。随着接枝的I型胶原量增加,EC的水平及其粘附效率得到改善。在涂覆有最高I型胶原的纳米复合材料上发现EC的最大粘附。血小板粘附和活化也随着胶原密度增加而增加。所有处理样品获得的HR值均在生物材料可接受标准范围内(<5%HR)。

结论

聚-AA-g-POSS-PCU表面通过使用EDC交联化学暴露RGD细胞结合域和生长因子,为I型胶原和其他生物分子(如纤连蛋白)的共价键合提供结合位点。I型胶原修饰可促进EC生长并增强POSS-PCU纳米复合材料的内皮化,并且固定的胶原量可通过TSPT和聚丙烯酸(聚-AA)处理控制功能化POSS-PCU上的血小板粘附水平。聚合物表面的这种表面修饰程序可提高POSS-PCU纳米复合材料作为血管旁路移植物在一系列准备进行临床前和体内评估的医疗设备制备中的通畅率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验