Suppr超能文献

测试大脑功能连接中的组间差异:使用相关性还是偏相关性?

Testing group differences in brain functional connectivity: using correlations or partial correlations?

作者信息

Kim Junghi, Wozniak Jeffrey R, Mueller Bryon A, Pan Wei

机构信息

1 Division of Biostatistics, School of Public Health, University of Minnesota , Minneapolis, Minnesota.

出版信息

Brain Connect. 2015 May;5(4):214-31. doi: 10.1089/brain.2014.0319. Epub 2015 Feb 25.

Abstract

Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more stable testing results than using partial correlations; the conclusion is reversed if the covariance matrices, not the precision matrices, are sparse. These results may have useful implications to future studies on testing functional connectivity differences.

摘要

静息态功能磁共振成像使人们能够研究大脑功能连接,部分原因是有证据表明,患有诸如阿尔茨海默病等复杂疾病的患者与健康受试者相比,其大脑功能连接模式可能发生了改变。功能连接网络描述了不同且遥远的脑区之间神经活动的统计关联。最近,人们对组水平的功能网络分析产生了浓厚兴趣;然而,关于统计推断的研究相对较少,例如用于组间比较的显著性检验。特别是,对于应使用哪种统计量来测量作为连接权重的成对关联仍存在争议。许多功能连接研究在成对关联中使用了(完全或边际)相关性或偏相关性。本文研究了使用相关性或偏相关性来检验大脑连接性组间差异的性能,以及连接性的稀疏水平和拓扑结构如何影响检测组间差异的统计功效。我们的结果表明,一般来说,检验网络中的组间差异与估计网络有所不同。例如,协方差矩阵和精度矩阵中的高正则化可能会导致更高的统计功效;特别是,在估计误差较小的精度矩阵上进行最优选择的正则化(例如通过交叉验证甚至在真实稀疏水平上)可能功效较低。最重要的是,也许令人惊讶的是,使用相关性或偏相关性可能会给出非常不同的检验结果,这取决于协方差矩阵和精度矩阵哪一个是稀疏的。具体而言,如果精度矩阵是稀疏的,大概且可以说是一个合理的假设,那么使用相关性通常会比使用偏相关性产生更高功效且更稳定的检验结果;如果是协方差矩阵而不是精度矩阵是稀疏的,结论则相反。这些结果可能对未来关于检验功能连接差异的研究具有有益的启示。

相似文献

2
Comparison of statistical tests for group differences in brain functional networks.脑功能网络组间差异统计检验的比较
Neuroimage. 2014 Nov 1;101:681-94. doi: 10.1016/j.neuroimage.2014.07.031. Epub 2014 Jul 30.
4
Structurally-informed Bayesian functional connectivity analysis.基于结构的贝叶斯功能连接分析。
Neuroimage. 2014 Feb 1;86:294-305. doi: 10.1016/j.neuroimage.2013.09.075. Epub 2013 Oct 10.
5
Thresholding functional connectomes by means of mixture modeling.通过混合建模对功能连接体进行阈值处理。
Neuroimage. 2018 May 1;171:402-414. doi: 10.1016/j.neuroimage.2018.01.003. Epub 2018 Jan 5.
6
Bayesian modeling of dependence in brain connectivity data.脑连接数据中相关性的贝叶斯建模。
Biostatistics. 2020 Apr 1;21(2):269-286. doi: 10.1093/biostatistics/kxy046.

引用本文的文献

6
Group-level comparison of brain connectivity networks.脑连接网络的组水平比较。
BMC Med Res Methodol. 2022 Oct 17;22(1):273. doi: 10.1186/s12874-022-01712-8.

本文引用的文献

4
Comparison of statistical tests for group differences in brain functional networks.脑功能网络组间差异统计检验的比较
Neuroimage. 2014 Nov 1;101:681-94. doi: 10.1016/j.neuroimage.2014.07.031. Epub 2014 Jul 30.
6
A powerful and adaptive association test for rare variants.一种针对罕见变异的强大且自适应的关联测试。
Genetics. 2014 Aug;197(4):1081-95. doi: 10.1534/genetics.114.165035. Epub 2014 May 15.
7
A mesoscale connectome of the mouse brain.小鼠大脑的介观连接组图谱
Nature. 2014 Apr 10;508(7495):207-14. doi: 10.1038/nature13186. Epub 2014 Apr 2.
9
Resting-state fMRI in the Human Connectome Project.静息态功能磁共振成像在人类连接组计划中的应用。
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
10
Learning and comparing functional connectomes across subjects.学习和比较不同受试者的功能连接组。
Neuroimage. 2013 Oct 15;80:405-15. doi: 10.1016/j.neuroimage.2013.04.007. Epub 2013 Apr 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验