Suppr超能文献

微小剪接小核核糖核酸在发育中的小鼠中枢神经系统中富集,对分化中的视网膜神经元的存活至关重要。

Minor splicing snRNAs are enriched in the developing mouse CNS and are crucial for survival of differentiating retinal neurons.

作者信息

Baumgartner Marybeth, Lemoine Christopher, Al Seesi Sahar, Karunakaran Devi Krishna Priya, Sturrock Nikita, Banday Abdul Rouf, Kilcollins Ashley M, Mandoiu Ion, Kanadia Rahul N

机构信息

Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269.

Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269.

出版信息

Dev Neurobiol. 2015 Sep;75(9):895-907. doi: 10.1002/dneu.22257. Epub 2014 Dec 19.

Abstract

In eukaryotes, gene expression requires splicing, which starts with the identification of exon-intron boundaries by the small, nuclear RNA (snRNAs) of the spliceosome, aided by associated proteins. In the mammalian genome, <1% of introns lack canonical exon-intron boundary sequences and cannot be spliced by the canonical splicing machinery. These introns are spliced by the minor spliceosome, consisting of unique snRNAs (U11, U12, U4atac, and U6atac). The importance of the minor spliceosome is underscored by the disease microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), which is caused by mutation in U4atac. Thus, it is important to understand the expression and function of the minor spliceosome and its targets in mammalian development, for which we used the mouse as our model. Here, we report enrichment of the minor snRNAs in the developing head/central nervous system (CNS) between E9.5 and E12.5, along with enrichment of these snRNAs in differentiating retinal neurons. Moreover, dynamic expression kinetics of minor intron-containing genes (MIGs) was observed across retinal development. DAVID analysis of MIGs that were cotranscriptionally upregulated embryonically revealed enrichment for RNA metabolism and cell cycle regulation. In contrast, MIGs that were cotranscriptionally upregulated postnatally revealed enrichment for protein localization/transport, vesicle-mediated transport, and calcium transport. Finally, we used U12 morpholino to inactivate the minor spliceosome in the postnatal retina, which resulted in apoptosis of differentiating retinal neurons. Taken together, our data suggest that the minor spliceosome may have distinct functions in embryonic versus postnatal development. Importantly, we show that the minor spliceosome is crucial for the survival of terminally differentiating retinal neurons.

摘要

在真核生物中,基因表达需要剪接,剪接起始于剪接体的小核RNA(snRNA)在相关蛋白质的辅助下识别外显子-内含子边界。在哺乳动物基因组中,不到1%的内含子缺乏典型的外显子-内含子边界序列,无法被典型的剪接机制剪接。这些内含子由包含独特snRNA(U11、U12、U4atac和U6atac)的次要剪接体进行剪接。1型小头畸形骨发育异常原发性侏儒症(MOPD1)这种疾病凸显了次要剪接体的重要性,该疾病由U4atac突变引起。因此,了解次要剪接体及其靶点在哺乳动物发育中的表达和功能很重要,我们以小鼠为模型进行研究。在此,我们报告在胚胎第9.5天至12.5天期间,发育中的头部/中枢神经系统(CNS)中次要snRNA富集,同时这些snRNA在分化的视网膜神经元中也富集。此外,在视网膜发育过程中观察到含次要内含子基因(MIG)的动态表达动力学。对胚胎期共转录上调的MIG进行DAVID分析发现,其在RNA代谢和细胞周期调控方面富集。相比之下,出生后共转录上调的MIG在蛋白质定位/运输、囊泡介导的运输和钙运输方面富集。最后,我们使用U12吗啉代寡核苷酸使出生后视网膜中的次要剪接体失活,这导致分化的视网膜神经元凋亡。综上所述,我们的数据表明次要剪接体在胚胎发育与出生后发育中可能具有不同的功能。重要的是,我们表明次要剪接体对终末分化的视网膜神经元的存活至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验