Suppr超能文献

splicing 在脊椎动物发育中的新兴意义。

The emerging significance of splicing in vertebrate development.

机构信息

Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA.

Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.

出版信息

Development. 2022 Oct 1;149(19). doi: 10.1242/dev.200373. Epub 2022 Sep 30.

Abstract

Splicing is a crucial regulatory node of gene expression that has been leveraged to expand the proteome from a limited number of genes. Indeed, the vast increase in intron number that accompanied vertebrate emergence might have aided the evolution of developmental and organismal complexity. Here, we review how animal models for core spliceosome components have provided insights into the role of splicing in vertebrate development, with a specific focus on neuronal, neural crest and skeletal development. To this end, we also discuss relevant spliceosomopathies, which are developmental disorders linked to mutations in spliceosome subunits. Finally, we discuss potential mechanisms that could underlie the tissue-specific phenotypes often observed upon spliceosome inhibition and identify gaps in our knowledge that, we hope, will inspire further research.

摘要

剪接是基因表达的一个关键调控节点,它被用来从有限数量的基因中扩展蛋白质组。事实上,伴随着脊椎动物出现的内含子数量的大量增加可能有助于发育和机体复杂性的进化。在这里,我们回顾了核心剪接体成分的动物模型如何为剪接在脊椎动物发育中的作用提供了见解,特别关注神经元、神经嵴和骨骼发育。为此,我们还讨论了相关的剪接体病,这些疾病与剪接体亚基的突变有关。最后,我们讨论了潜在的机制,这些机制可能是在剪接体抑制时经常观察到的组织特异性表型的基础,并确定了我们知识中的空白,我们希望这将激发进一步的研究。

相似文献

1
The emerging significance of splicing in vertebrate development.
Development. 2022 Oct 1;149(19). doi: 10.1242/dev.200373. Epub 2022 Sep 30.
2
Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome.
Wiley Interdiscip Rev RNA. 2023 Jan;14(1):e1761. doi: 10.1002/wrna.1761. Epub 2022 Sep 2.
4
Spliceosome twin introns in fungal nuclear transcripts.
Fungal Genet Biol. 2013 Aug;57:48-57. doi: 10.1016/j.fgb.2013.06.003. Epub 2013 Jun 19.
7
Surprisingly high number of Twintrons in vertebrates.
Biol Direct. 2013 Jan 28;8:4. doi: 10.1186/1745-6150-8-4.
8
Dysregulated minor intron splicing in cancer.
Cancer Sci. 2022 Sep;113(9):2934-2942. doi: 10.1111/cas.15476. Epub 2022 Jul 11.
10
Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms.
RNA Biol. 2015;12(11):1-8. doi: 10.1080/15476286.2015.1094602. Epub 2015 Sep 23.

引用本文的文献

1
Alternative splicing in stem cells and development: research progress and emerging technologies.
Cell Regen. 2025 Jun 4;14(1):20. doi: 10.1186/s13619-025-00238-w.
2
Connecting genotype and phenotype in minor spliceosome diseases.
RNA. 2025 Feb 19;31(3):284-299. doi: 10.1261/rna.080337.124.
4
Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development.
Nat Commun. 2024 Aug 8;15(1):6773. doi: 10.1038/s41467-024-51041-1.
5
Taxonomy of introns and the evolution of minor introns.
Nucleic Acids Res. 2024 Aug 27;52(15):9247-9266. doi: 10.1093/nar/gkae550.
6
Regulation of alternative splicing and polyadenylation in neurons.
Life Sci Alliance. 2023 Oct 4;6(12). doi: 10.26508/lsa.202302000. Print 2023 Dec.
7
Introns: the "dark matter" of the eukaryotic genome.
Front Genet. 2023 May 16;14:1150212. doi: 10.3389/fgene.2023.1150212. eCollection 2023.
8
Alternative splicing in shaping the molecular landscape of the cochlea.
Front Cell Dev Biol. 2023 Mar 2;11:1143428. doi: 10.3389/fcell.2023.1143428. eCollection 2023.

本文引用的文献

2
Snrpb is required in murine neural crest cells for proper splicing and craniofacial morphogenesis.
Dis Model Mech. 2022 Jun 1;15(6). doi: 10.1242/dmm.049544. Epub 2022 Jun 23.
4
Functional Impact and Regulation of Alternative Splicing in Mouse Heart Development and Disease.
J Cardiovasc Transl Res. 2022 Dec;15(6):1239-1255. doi: 10.1007/s12265-022-10244-x. Epub 2022 Mar 30.
6
Trp53 ablation fails to prevent microcephaly in mouse pallium with impaired minor intron splicing.
Development. 2021 Oct 15;148(20). doi: 10.1242/dev.199591. Epub 2021 Oct 19.
7
Alternative splicing regulation of cell-cycle genes by SPF45/SR140/CHERP complex controls cell proliferation.
RNA. 2021 Dec;27(12):1557-1576. doi: 10.1261/rna.078935.121. Epub 2021 Sep 20.
8
Haploinsufficiency of SF3B2 causes craniofacial microsomia.
Nat Commun. 2021 Aug 3;12(1):4680. doi: 10.1038/s41467-021-24852-9.
9
CDC5L promotes early chondrocyte differentiation and proliferation by modulating pre-mRNA splicing of SOX9, COL2A1, and WEE1.
J Biol Chem. 2021 Aug;297(2):100994. doi: 10.1016/j.jbc.2021.100994. Epub 2021 Jul 21.
10
The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing.
Nat Commun. 2021 May 26;12(1):3153. doi: 10.1038/s41467-021-23505-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验