Deichmann Gregor, Marcon Valentina, van der Vegt Nico F A
Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany.
J Chem Phys. 2014 Dec 14;141(22):224109. doi: 10.1063/1.4903454.
Molecular simulations of soft matter systems have been performed in recent years using a variety of systematically coarse-grained models. With these models, structural or thermodynamic properties can be quite accurately represented while the prediction of dynamic properties remains difficult, especially for multi-component systems. In this work, we use constraint molecular dynamics simulations for calculating dissipative pair forces which are used together with conditional reversible work (CRW) conservative forces in dissipative particle dynamics (DPD) simulations. The combined CRW-DPD approach aims to extend the representability of CRW models to dynamic properties and uses a bottom-up approach. Dissipative pair forces are derived from fluctuations of the direct atomistic forces between mapped groups. The conservative CRW potential is obtained from a similar series of constraint dynamics simulations and represents the reversible work performed to couple the direct atomistic interactions between the mapped atom groups. Neopentane, tetrachloromethane, cyclohexane, and n-hexane have been considered as model systems. These molecular liquids are simulated with atomistic molecular dynamics, coarse-grained molecular dynamics, and DPD. We find that the CRW-DPD models reproduce the liquid structure and diffusive dynamics of the liquid systems in reasonable agreement with the atomistic models when using single-site mapping schemes with beads containing five or six heavy atoms. For a two-site representation of n-hexane (3 carbons per bead), time scale separation can no longer be assumed and the DPD approach consequently fails to reproduce the atomistic dynamics.
近年来,人们使用各种系统粗粒化模型对软物质系统进行了分子模拟。利用这些模型,可以相当准确地表示结构或热力学性质,而动态性质的预测仍然很困难,特别是对于多组分系统。在这项工作中,我们使用约束分子动力学模拟来计算耗散对力,这些力与耗散粒子动力学(DPD)模拟中的条件可逆功(CRW)保守力一起使用。CRW-DPD组合方法旨在将CRW模型的可表示性扩展到动态性质,并采用自下而上的方法。耗散对力源自映射基团之间直接原子力的涨落。保守的CRW势是通过一系列类似的约束动力学模拟获得的,它表示为耦合映射原子基团之间的直接原子相互作用而执行的可逆功。新戊烷、四氯化碳、环己烷和正己烷被视为模型系统。这些分子液体通过原子分子动力学、粗粒化分子动力学和DPD进行模拟。我们发现,当使用包含五个或六个重原子的珠子的单位点映射方案时,CRW-DPD模型能够合理地再现液体系统的液体结构和扩散动力学,与原子模型相当一致。对于正己烷的双位点表示(每个珠子3个碳原子),不再能假设时间尺度分离,因此DPD方法无法再现原子动力学。