Suppr超能文献

介绍粗粒化分子模拟中的记忆。

Introducing Memory in Coarse-Grained Molecular Simulations.

机构信息

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.

Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21 A, A-6020 Innsbruck, Austria.

出版信息

J Phys Chem B. 2021 May 20;125(19):4931-4954. doi: 10.1021/acs.jpcb.1c01120. Epub 2021 May 13.

Abstract

Preserving the correct dynamics at the coarse-grained (CG) level is a pressing problem in the development of systematic CG models in soft matter simulation. Starting from the seminal idea of simple time-scale mapping, there have been many efforts over the years toward establishing a meticulous connection between the CG and fine-grained (FG) dynamics based on fundamental statistical mechanics approaches. One of the most successful attempts in this context has been the development of CG models based on the Mori-Zwanzig (MZ) theory, where the resulting equation of motion has the form of a generalized Langevin equation (GLE) and closely preserves the underlying FG dynamics. In this Review, we describe some of the recent studies in this regard. We focus on the construction and simulation of dynamically consistent systematic CG models based on the GLE, both in the simple Markovian limit and the non-Markovian case. Some recent studies of physical effects of memory are also discussed. The Review is aimed at summarizing recent developments in the field while highlighting the major challenges and possible future directions.

摘要

在软物质模拟中,开发系统的粗粒化(CG)模型时,保持 CG 水平的正确动力学是一个紧迫的问题。从简单时间尺度映射的开创性思想出发,多年来,人们一直致力于根据基础统计力学方法,在 CG 和细粒化(FG)动力学之间建立细致的联系。在这方面,最成功的尝试之一是基于 Mori-Zwanzig(MZ)理论开发 CG 模型,其中运动方程的形式为广义朗之万方程(GLE),并紧密保留了基础的 FG 动力学。在这篇综述中,我们描述了这方面的一些最新研究。我们专注于基于 GLE 的动态一致的系统 CG 模型的构建和模拟,包括在简单的马尔可夫极限和非马尔可夫情况下。还讨论了一些最近关于记忆物理效应的研究。这篇综述旨在总结该领域的最新发展,同时强调主要的挑战和可能的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验