Joyce Daniel S, Feigl Beatrix, Cao Dingcai, Zele Andrew J
Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Queensland Eye Institute, Brisbane, Australia.
Vision Res. 2015 Feb;107:58-66. doi: 10.1016/j.visres.2014.12.001. Epub 2014 Dec 10.
Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.
视杆细胞、视锥细胞以及含有黑视蛋白的内在光敏性视网膜神经节细胞(ipRGCs)协同作用以调节瞳孔直径。内在ipRGC信号的时间特性与视杆细胞和视锥细胞不同,包括更长的潜伏期以及光熄灭后的持续信号。我们研究了黑视蛋白介导的光照后瞳孔反应(PIPR)和瞳孔收缩是否依赖于连续光脉冲之间的刺激间隔(ISI)以及正弦光刺激的时间频率。通过改变刺激波长(464nm和638nm光)和辐照度(11.4和15.2 log光子·cm⁻²·s⁻¹)来改变黑视蛋白的激发。我们发现,在所有黑视蛋白激发水平下,6秒PIPR幅度均与ISI和时间频率无关,表明完全总和。与PIPR相反,最大瞳孔收缩随着高和低黑视蛋白激发下ISI的增加而增加,但仅在高黑视蛋白激发下达到最小直径的时间较慢。这种对短暂呈现脉冲(16和100毫秒)的黑视蛋白反应减缓了最大瞳孔收缩的时间反应。我们还证明,与低黑视蛋白激发条件相比,高黑视蛋白激发会减弱相位峰谷瞳孔幅度,表明瞳孔光反射的视网膜内外输入之间存在相互作用。我们推断,视网膜外总和对于响应光照的短时间尺度波动快速控制瞳孔直径很重要,可能发生在两个潜在部位,一个是在ipRGCs的外在光感受器输入的突触前部位,或者如果ipRGCs对外在和内在信号有不同的时间调谐,则在瞳孔控制途径内还有另一个部位。