Suppr超能文献

黑视蛋白输入到人类瞳孔光反射的时间特征。

Temporal characteristics of melanopsin inputs to the human pupil light reflex.

作者信息

Joyce Daniel S, Feigl Beatrix, Cao Dingcai, Zele Andrew J

机构信息

Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

Visual Science and Medical Retina Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Queensland Eye Institute, Brisbane, Australia.

出版信息

Vision Res. 2015 Feb;107:58-66. doi: 10.1016/j.visres.2014.12.001. Epub 2014 Dec 10.

Abstract

Rods, cones and melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs) operate in concert to regulate pupil diameter. The temporal properties of intrinsic ipRGC signalling are distinct to those of rods and cones, including longer latencies and sustained signalling after light offset. We examined whether the melanopsin mediated post-illumination pupil response (PIPR) and pupil constriction were dependent upon the inter-stimulus interval (ISI) between successive light pulses and the temporal frequency of sinusoidal light stimuli. Melanopsin excitation was altered by variation of stimulus wavelength (464 nm and 638 nm lights) and irradiance (11.4 and 15.2 log photons cm(-2) s(-1)). We found that 6s PIPR amplitude was independent of ISI and temporal frequency for all melanopsin excitation levels, indicating complete summation. In contrast to the PIPR, the maximum pupil constriction increased with increasing ISI with high and low melanopsin excitation, but time to minimum diameter was slower with high melanopsin excitation only. This melanopsin response to briefly presented pulses (16 and 100 ms) slows the temporal response of the maximum pupil constriction. We also demonstrate that high melanopsin excitation attenuates the phasic peak-trough pupil amplitude compared to conditions with low melanopsin excitation, indicating an interaction between inner and outer retinal inputs to the pupil light reflex. We infer that outer retina summation is important for rapidly controlling pupil diameter in response to short timescale fluctuations in illumination and may occur at two potential sites, one that is presynaptic to extrinsic photoreceptor input to ipRGCs, or another within the pupil control pathway if ipRGCs have differential temporal tuning to extrinsic and intrinsic signalling.

摘要

视杆细胞、视锥细胞以及含有黑视蛋白的内在光敏性视网膜神经节细胞(ipRGCs)协同作用以调节瞳孔直径。内在ipRGC信号的时间特性与视杆细胞和视锥细胞不同,包括更长的潜伏期以及光熄灭后的持续信号。我们研究了黑视蛋白介导的光照后瞳孔反应(PIPR)和瞳孔收缩是否依赖于连续光脉冲之间的刺激间隔(ISI)以及正弦光刺激的时间频率。通过改变刺激波长(464nm和638nm光)和辐照度(11.4和15.2 log光子·cm⁻²·s⁻¹)来改变黑视蛋白的激发。我们发现,在所有黑视蛋白激发水平下,6秒PIPR幅度均与ISI和时间频率无关,表明完全总和。与PIPR相反,最大瞳孔收缩随着高和低黑视蛋白激发下ISI的增加而增加,但仅在高黑视蛋白激发下达到最小直径的时间较慢。这种对短暂呈现脉冲(16和100毫秒)的黑视蛋白反应减缓了最大瞳孔收缩的时间反应。我们还证明,与低黑视蛋白激发条件相比,高黑视蛋白激发会减弱相位峰谷瞳孔幅度,表明瞳孔光反射的视网膜内外输入之间存在相互作用。我们推断,视网膜外总和对于响应光照的短时间尺度波动快速控制瞳孔直径很重要,可能发生在两个潜在部位,一个是在ipRGCs的外在光感受器输入的突触前部位,或者如果ipRGCs对外在和内在信号有不同的时间调谐,则在瞳孔控制途径内还有另一个部位。

相似文献

1
Temporal characteristics of melanopsin inputs to the human pupil light reflex.
Vision Res. 2015 Feb;107:58-66. doi: 10.1016/j.visres.2014.12.001. Epub 2014 Dec 10.
2
Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR).
PLoS One. 2016 Aug 22;11(8):e0161175. doi: 10.1371/journal.pone.0161175. eCollection 2016.
4
Melanopsin-Mediated Post-Illumination Pupil Response in Early Age-Related Macular Degeneration.
Invest Ophthalmol Vis Sci. 2015 Oct;56(11):6906-13. doi: 10.1167/iovs.15-17357.
5
The effect of controlled photopigment excitations on pupil aperture.
Ophthalmic Physiol Opt. 2010 Sep;30(5):484-91. doi: 10.1111/j.1475-1313.2010.00754.x.
6
Assessing rod, cone, and melanopsin contributions to human pupil flicker responses.
Invest Ophthalmol Vis Sci. 2014 Feb 4;55(2):719-27. doi: 10.1167/iovs.13-13252.
7
The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes.
Acta Ophthalmol. 2012 May;90(3):e230-4. doi: 10.1111/j.1755-3768.2011.02226.x. Epub 2011 Aug 23.
8
Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment.
Exp Eye Res. 2015 Oct;139:73-80. doi: 10.1016/j.exer.2015.07.010. Epub 2015 Jul 23.
10
Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease.
J Parkinsons Dis. 2020;10(4):1467-1476. doi: 10.3233/JPD-202178.

引用本文的文献

2
Assessing perceptual chromatic equiluminance using a reflexive pupillary response.
Sci Rep. 2024 Jan 29;14(1):2420. doi: 10.1038/s41598-024-51982-z.
3
Binocular head-mounted chromatic pupillometry can detect structural and functional loss in glaucoma.
Front Neurosci. 2023 Jun 29;17:1187619. doi: 10.3389/fnins.2023.1187619. eCollection 2023.
4
Optimizing Light Flash Sequence Duration to Shift Human Circadian Phase.
Biology (Basel). 2022 Dec 13;11(12):1807. doi: 10.3390/biology11121807.
5
Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health.
Sleep Med Rev. 2022 Aug;64:101667. doi: 10.1016/j.smrv.2022.101667. Epub 2022 Aug 12.
8
PyPlr: A versatile, integrated system of hardware and software for researching the human pupillary light reflex.
Behav Res Methods. 2022 Dec;54(6):2720-2739. doi: 10.3758/s13428-021-01759-3. Epub 2021 Dec 16.
9
Correlated color temperature and light intensity: Complementary features in non-visual light field.
PLoS One. 2021 Jul 12;16(7):e0254171. doi: 10.1371/journal.pone.0254171. eCollection 2021.
10
The flicker Pupil Light Response (fPLR).
Transl Vis Sci Technol. 2019 Oct 17;8(5):29. doi: 10.1167/tvst.8.5.29. eCollection 2019 Sep.

本文引用的文献

1
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease.
Optom Vis Sci. 2014 Aug;91(8):894-903. doi: 10.1097/OPX.0000000000000284.
2
Assessing rod, cone, and melanopsin contributions to human pupil flicker responses.
Invest Ophthalmol Vis Sci. 2014 Feb 4;55(2):719-27. doi: 10.1167/iovs.13-13252.
3
Measuring and using light in the melanopsin age.
Trends Neurosci. 2014 Jan;37(1):1-9. doi: 10.1016/j.tins.2013.10.004. Epub 2013 Nov 25.
5
A retinal ganglion cell that can signal irradiance continuously for 10 hours.
J Neurosci. 2012 Aug 15;32(33):11478-85. doi: 10.1523/JNEUROSCI.1423-12.2012.
6
Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses.
Invest Ophthalmol Vis Sci. 2012 Jul 3;53(8):4546-55. doi: 10.1167/iovs.12-9494.
7
The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes.
Acta Ophthalmol. 2012 May;90(3):e230-4. doi: 10.1111/j.1755-3768.2011.02226.x. Epub 2011 Aug 23.
8
Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs.
Nature. 2011 Jul 17;476(7358):92-5. doi: 10.1038/nature10206.
9
Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response.
Invest Ophthalmol Vis Sci. 2011 Aug 22;52(9):6624-35. doi: 10.1167/iovs.11-7586.
10
Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma.
Invest Ophthalmol Vis Sci. 2011 Jun 21;52(7):4362-7. doi: 10.1167/iovs.10-7069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验