Suppr超能文献

利用具有生物学相关性的九微小RNA特征预测胶质母细胞瘤的临床结局

Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature.

作者信息

Hayes Josie, Thygesen Helene, Tumilson Charlotte, Droop Alastair, Boissinot Marjorie, Hughes Thomas A, Westhead David, Alder Jane E, Shaw Lisa, Short Susan C, Lawler Sean E

机构信息

Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds LS9 7TF, UK.

School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.

出版信息

Mol Oncol. 2015 Mar;9(3):704-14. doi: 10.1016/j.molonc.2014.11.004. Epub 2014 Nov 28.

Abstract

BACKGROUND

Glioblastoma is the most aggressive primary brain tumor, and is associated with a very poor prognosis. In this study we investigated the potential of microRNA expression profiles to predict survival in this challenging disease.

METHODS

MicroRNA and mRNA expression data from glioblastoma (n = 475) and grade II and III glioma (n = 178) were accessed from The Cancer Genome Atlas. LASSO regression models were used to identify a prognostic microRNA signature. Functionally relevant targets of microRNAs were determined using microRNA target prediction, experimental validation and correlation of microRNA and mRNA expression data.

RESULTS

A 9-microRNA prognostic signature was identified which stratified patients into risk groups strongly associated with survival (p = 2.26e-09), significant in all glioblastoma subtypes except the non-G-CIMP proneural group. The statistical significance of the microRNA signature was higher than MGMT methylation in temozolomide treated tumors. The 9-microRNA risk score was validated in an independent dataset (p = 4.50e-02) and also stratified patients into high- and low-risk groups in lower grade glioma (p = 5.20e-03). The majority of the 9 microRNAs have been previously linked to glioblastoma biology or treatment response. Integration of the expression patterns of predicted microRNA targets revealed a number of relevant microRNA/target pairs, which were validated in cell lines.

CONCLUSIONS

We have identified a novel, biologically relevant microRNA signature that stratifies high- and low-risk patients in glioblastoma. MicroRNA/mRNA interactions identified within the signature point to novel regulatory networks. This is the first study to formulate a survival risk score for glioblastoma which consists of microRNAs associated with glioblastoma biology and/or treatment response, indicating a functionally relevant signature.

摘要

背景

胶质母细胞瘤是最具侵袭性的原发性脑肿瘤,预后极差。在本研究中,我们调查了微小RNA表达谱预测这种难治性疾病患者生存情况的潜力。

方法

从癌症基因组图谱获取胶质母细胞瘤(n = 475)以及II级和III级胶质瘤(n = 178)的微小RNA和信使核糖核酸表达数据。使用套索回归模型识别预后微小RNA特征。通过微小RNA靶标预测、实验验证以及微小RNA与信使核糖核酸表达数据的相关性来确定微小RNA的功能相关靶标。

结果

识别出一种9微小RNA预后特征,可将患者分为与生存密切相关的风险组(p = 2.26e - 09),在除非G - CIMP促神经细胞型组外的所有胶质母细胞瘤亚型中均具有显著性。在替莫唑胺治疗的肿瘤中,微小RNA特征的统计学显著性高于O6 - 甲基鸟嘌呤 - DNA甲基转移酶甲基化。9微小RNA风险评分在独立数据集中得到验证(p = 4.50e - 02),在低级别胶质瘤中也可将患者分为高风险和低风险组(p = 5.20e - 03)。先前大多数9种微小RNA已被证明与胶质母细胞瘤生物学或治疗反应相关。预测的微小RNA靶标的表达模式整合揭示了许多相关的微小RNA/靶标对,并在细胞系中得到验证。

结论

我们识别出一种新的、与生物学相关的微小RNA特征,可将胶质母细胞瘤患者分为高风险和低风险组。该特征中识别出的微小RNA/信使核糖核酸相互作用指向新的调控网络。这是第一项为胶质母细胞瘤制定生存风险评分的研究,该评分由与胶质母细胞瘤生物学和/或治疗反应相关的微小RNA组成,表明其具有功能相关特征。

相似文献

1
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature.
Mol Oncol. 2015 Mar;9(3):704-14. doi: 10.1016/j.molonc.2014.11.004. Epub 2014 Nov 28.
4
Novel predictive epigenetic signature for temozolomide in non-G-CIMP glioblastomas.
Clin Epigenetics. 2019 May 14;11(1):76. doi: 10.1186/s13148-019-0670-9.
5
A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab.
Mol Oncol. 2016 Oct;10(8):1296-304. doi: 10.1016/j.molonc.2016.06.004. Epub 2016 Jul 1.
7
MicroRNA profiling of Chinese primary glioblastoma reveals a temozolomide-chemoresistant subtype.
Oncotarget. 2015 May 10;6(13):11676-82. doi: 10.18632/oncotarget.3258.
8
A three-microRNA signature identifies two subtypes of glioblastoma patients with different clinical outcomes.
Mol Oncol. 2017 Sep;11(9):1115-1129. doi: 10.1002/1878-0261.12047. Epub 2017 Jul 13.
9
miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression.
Neuro Oncol. 2012 Jun;14(6):712-9. doi: 10.1093/neuonc/nos089. Epub 2012 May 8.

引用本文的文献

1
Role of the TLR signaling pathway in the pathogenesis of glioblastoma multiforme with an emphasis on immunotherapy.
Biochem Biophys Rep. 2025 Jul 18;43:102149. doi: 10.1016/j.bbrep.2025.102149. eCollection 2025 Sep.
2
Radiogenomics-Based Risk Prediction of Glioblastoma Multiforme with Clinical Relevance.
Genes (Basel). 2024 Jun 1;15(6):718. doi: 10.3390/genes15060718.
5
6
MicroRNAs as prognostic markers and therapeutic targets in gliomas.
Noncoding RNA Res. 2022 Jul 6;7(3):171-177. doi: 10.1016/j.ncrna.2022.07.001. eCollection 2022 Sep.

本文引用的文献

1
MicroRNAs in cancer: biomarkers, functions and therapy.
Trends Mol Med. 2014 Aug;20(8):460-9. doi: 10.1016/j.molmed.2014.06.005. Epub 2014 Jul 12.
2
MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma.
Oncogene. 2015 Apr 23;34(17):2204-14. doi: 10.1038/onc.2014.168. Epub 2014 Jun 23.
3
Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma.
J Exp Clin Cancer Res. 2014 Jan 19;33(1):9. doi: 10.1186/1756-9966-33-9.
4
microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma.
Cancer Res. 2014 Mar 1;74(5):1541-53. doi: 10.1158/0008-5472.CAN-13-1449. Epub 2014 Jan 14.
5
The somatic genomic landscape of glioblastoma.
Cell. 2013 Oct 10;155(2):462-77. doi: 10.1016/j.cell.2013.09.034.
7
Multi-institutional validation of a preoperative scoring system which predicts survival for patients with glioblastoma.
J Clin Neurosci. 2013 Oct;20(10):1422-6. doi: 10.1016/j.jocn.2013.02.007. Epub 2013 Aug 6.
8
MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells.
Neuro Oncol. 2013 Oct;15(10):1302-16. doi: 10.1093/neuonc/not090. Epub 2013 Jun 28.
9
Definition of miRNAs expression profile in glioblastoma samples: the relevance of non-neoplastic brain reference.
PLoS One. 2013;8(1):e55314. doi: 10.1371/journal.pone.0055314. Epub 2013 Jan 29.
10
The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas.
Curr Cancer Drug Targets. 2013 Feb;13(2):221-31. doi: 10.2174/1568009611313020010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验