Suppr超能文献

中国山东糖尿病患病率的影响因素、指标及空间变异:一种运用数据驱动和空间方法的框架

Influencing Indicators and Spatial Variation of Diabetes Mellitus Prevalence in Shandong, China: A Framework for Using Data-Driven and Spatial Methods.

作者信息

Li Yizhuo, Fei Teng, Wang Jian, Nicholas Stephen, Li Jun, Xu Lizheng, Huang Yanran, Li Hanqi

机构信息

School of Resource and Environmental Sciences Wuhan University Wuhan China.

Research Center of Health Economics and Management Dong Fureng Institute of Economic and Social Development Wuhan University Beijing China.

出版信息

Geohealth. 2021 Mar 1;5(3):e2020GH000320. doi: 10.1029/2020GH000320. eCollection 2021 Mar.

Abstract

To control and prevent the risk of diabetes, diabetes studies have identified the need to better understand and evaluate the associations between influencing indicators and the prevalence of diabetes. One constraint has been that influencing indicators have been selected mainly based on subjective judgment and tested using traditional statistical modeling methods. We proposed a framework new to diabetes studies using data-driven and spatial methods to identify the most significant influential determinants of diabetes automatically and estimated their relationships. We used data from diabetes mellitus patients' health insurance records in Shandong province, China, and collected influencing indicators of diabetes prevalence at the county level in the sociodemographic, economic, education, and geographical environment domains. We specified a framework to identify automatically the most influential determinants of diabetes, and then established the relationship between these selected influencing indicators and diabetes prevalence. Our autocorrelation results showed that the diabetes prevalence in 12 Shandong cities was significantly clustered (Moran's  = 0.328,  < 0.01). In total, 17 significant influencing indicators were selected by executing binary linear regressions and lasso regressions. The spatial error regressions in different subgroups were subject to different diabetes indicators. Some positive indicators existed significantly like per capita fruit production and other indicators correlated with diabetes prevalence negatively like the proportion of green space. Diabetes prevalence was mainly subjected to the joint effects of influencing indicators. This framework can help public health officials to inform the implementation of improved treatment and policies to attenuate diabetes diseases.

摘要

为了控制和预防糖尿病风险,糖尿病研究已明确需要更好地理解和评估影响指标与糖尿病患病率之间的关联。一个限制因素是,影响指标主要是基于主观判断选定的,并使用传统统计建模方法进行检验。我们提出了一个糖尿病研究中的新框架,使用数据驱动和空间方法自动识别糖尿病最显著的影响因素,并估计它们之间的关系。我们使用了中国山东省糖尿病患者医疗保险记录中的数据,并收集了社会人口统计学、经济、教育和地理环境领域县级层面糖尿病患病率的影响指标。我们指定了一个框架来自动识别糖尿病最具影响力的决定因素,然后建立这些选定的影响指标与糖尿病患病率之间的关系。我们的自相关结果表明,山东省12个城市的糖尿病患病率存在显著聚类(莫兰指数I = 0.328,P < 0.01)。通过执行二元线性回归和套索回归,共选择了17个显著影响指标。不同亚组的空间误差回归受不同糖尿病指标的影响。一些正向指标如人均水果产量显著存在,而其他指标如绿地比例与糖尿病患病率呈负相关。糖尿病患病率主要受影响指标的联合作用影响。该框架可以帮助公共卫生官员为实施改进的治疗方法和政策提供依据,以减轻糖尿病疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b0f/7989969/e8ca8d392614/GH2-5-e2020GH000320-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验