Shibuya Hiroki, Morimoto Akihiro, Watanabe Yoshinori
Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
PLoS Genet. 2014 Dec 11;10(12):e1004821. doi: 10.1371/journal.pgen.1004821. eCollection 2014 Dec.
During meiosis, the rapid movement of telomeres along the nuclear envelope (NE) facilitates pairing/synapsis of homologous chromosomes. In mammals, the mechanical properties of chromosome movement and the cytoskeletal structures responsible for it remain poorly understood. Here, applying an in vivo electroporation (EP) technique in live mouse testis, we achieved the quick visualization of telomere, chromosome axis and microtubule organizing center (MTOC) movements. For the first time, we defined prophase sub-stages of live spermatocytes morphologically according to GFP-TRF1 and GFP-SCP3 signals. We show that rapid telomere movement and subsequent nuclear rotation persist from leptotene/zygotene to pachytene, and then decline in diplotene stage concomitant with the liberation of SUN1 from telomeres. Further, during bouquet stage, telomeres are constrained near the MTOC, resulting in the transient suppression of telomere mobility and nuclear rotation. MTs are responsible for these movements by forming cable-like structures on the NE, and, probably, by facilitating the rail-tacking movements of telomeres on the MT cables. In contrast, actin regulates the oscillatory changes in nuclear shape. Our data provide the mechanical scheme for meiotic chromosome movement throughout prophase I in mammals.
在减数分裂过程中,端粒沿核膜(NE)的快速移动促进了同源染色体的配对/联会。在哺乳动物中,染色体运动的力学特性及其相关的细胞骨架结构仍知之甚少。在此,我们在活体小鼠睾丸中应用体内电穿孔(EP)技术,实现了端粒、染色体轴和微管组织中心(MTOC)运动的快速可视化。我们首次根据绿色荧光蛋白-端粒重复结合因子1(GFP-TRF1)和绿色荧光蛋白-联会复合体蛋白3(GFP-SCP3)信号,从形态学上定义了活态精母细胞的前期亚阶段。我们发现,从细线期/偶线期到粗线期,端粒的快速移动和随后的核旋转持续存在,然后在双线期随着SUN1从端粒上的释放而下降。此外,在花束期,端粒被限制在MTOC附近,导致端粒移动性和核旋转的短暂抑制。微管通过在核膜上形成索状结构,并可能通过促进端粒在微管索上的轨道跟踪运动来负责这些运动。相比之下,肌动蛋白调节核形状的振荡变化。我们的数据提供了哺乳动物减数分裂前期I全过程中减数分裂染色体运动的力学机制。