Buckhout-White Susan, Spillmann Christopher M, Algar W Russ, Khachatrian Ani, Melinger Joseph S, Goldman Ellen R, Ancona Mario G, Medintz Igor L
1] Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington DC, Washington 20375, USA [2] College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA.
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington DC, Washington 20375, USA.
Nat Commun. 2014 Dec 11;5:5615. doi: 10.1038/ncomms6615.
DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marshal organic dyes into nanoantennae that focus excitonic energy. We evaluate 36 increasingly complex designs including linear, bifurcated, Holliday junction, 8-arm star and dendrimers involving up to five different dyes engaging in four-consecutive FRET steps, while systematically varying fluorophore spacing by Förster distance (R0). Decreasing R0 while augmenting cross-sectional collection area with multiple donors significantly increases terminal exciton delivery efficiency within dendrimers compared with the first linear constructs. Förster modelling confirms that best results are obtained when there are multiple interacting FRET pathways rather than independent channels by which excitons travel from initial donor(s) to final acceptor.
DNA展现出了创造定制纳米结构和器件的卓越能力。越来越多的这类结构将福斯特共振能量转移(FRET)用作器件功能、读出或表征的一部分,并且随着器件复杂度的增加,对FRET的相关要求也在提高。在此,我们创建了多染料FRET级联,并评估DNA能在多大程度上将有机染料编排成聚焦激子能量的纳米天线。我们评估了36种日益复杂的设计,包括线性、分叉、霍利迪连接体、八臂星形和树枝状聚合物,这些设计涉及多达五种不同的染料,进行四个连续的FRET步骤,同时通过福斯特距离(R0)系统地改变荧光团间距。与最初的线性结构相比,在通过多个供体增大横截面收集面积的同时减小R0,可显著提高树枝状聚合物内的末端激子传递效率。福斯特模型证实,当存在多个相互作用的FRET途径而非激子从初始供体传输到最终受体的独立通道时,能获得最佳结果。