Mazuski Richard J, Díaz Sebastián A, Wood Ryan E, Lloyd Lawson T, Klein William P, Mathur Divita, Melinger Joseph S, Engel Gregory S, Medintz Igor L
Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
J Phys Chem Lett. 2020 May 21;11(10):4163-4172. doi: 10.1021/acs.jpclett.0c01020. Epub 2020 May 11.
DNA scaffolds enable base-pair-specific positioning of fluorescent molecules, allowing for nanometer-scale precision in controlling multidye interactions. Expanding on this concept, DNA-based molecular photonic wires (MPWs) allow for light harvesting and directional propagation of photonic energy on the nanometer scale. The most common MPW examples exploit Förster resonance energy transfer (FRET), and FRET between the same dye species (HomoFRET) was recently shown to increase the distance and efficiency at which MPWs can function. Although increased proximity between adjacent fluorophores can be used to increase the energy transfer efficiency, FRET assumptions break down as the distance between the dye molecules becomes comparable to their size (∼2 nm). Here we compare dye conjugation with single versus dimer Cy5 dye repeats as HomoFRET MPW components on a double-crossover DNA scaffold. At room temperature (RT) under low-light conditions, end-labeled uncoupled dye molecules provide optimal transfer, while the Cy5 dimers show ultrafast (<100 ps) nonradiative decay that severely limits their functionality. Of particular interest is the observation that through increased excitation fluence as well as cryogenic temperatures, the dimeric MPW shows suppression of the ultrafast decay, demonstrating fluorescence lifetimes similar to the single Cy5 MPWs. This work points to the complex dynamic capabilities of dye-based nanophotonic networks, where dye positioning and interactions can become critical, and could be used to extend the lengths and complexities of such dye-DNA devices, enabling multiparameter nanophotonic circuitry.
DNA支架能够实现荧光分子的碱基对特异性定位,从而在控制多染料相互作用方面实现纳米级精度。在此概念基础上进一步拓展,基于DNA的分子光子线(MPW)能够在纳米尺度上实现光捕获和光子能量的定向传播。最常见的MPW实例利用了Förster共振能量转移(FRET),最近研究表明,相同染料种类之间的FRET(同源FRET)能够增加MPW发挥作用的距离和效率。尽管相邻荧光团之间距离的减小可用于提高能量转移效率,但当染料分子之间的距离与其尺寸(约2纳米)相近时,FRET假设就不再成立。在此,我们比较了在双交叉DNA支架上,作为同源FRET MPW组件的单链与双链Cy5染料重复序列的染料偶联情况。在室温(RT)及低光照条件下,末端标记的未偶联染料分子能实现最佳转移,而Cy5二聚体则表现出超快(<100皮秒)的非辐射衰变,这严重限制了它们的功能。特别值得关注的是,通过增加激发通量以及采用低温条件,二聚体MPW的超快衰变得到了抑制,其荧光寿命与单链Cy5 MPW相似。这项工作揭示了基于染料的纳米光子网络具有复杂的动态特性,其中染料的定位和相互作用可能至关重要,并且可用于扩展此类染料-DNA器件的长度和复杂度,从而实现多参数纳米光子电路。