School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, UK
Instituto de Neurosciencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain.
ASN Neuro. 2014 Dec 12;6(6). doi: 10.1177/1759091414562107. Print 2014.
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.
视觉系统经过精心设计,可将外部世界的信息传输到大脑中的视觉处理和认知中心。为了将视觉信息传递到大脑,必须发生一系列的轴突寻路事件,以确保视网膜神经节细胞的轴突——视网膜中唯一将轴突送出视网膜的神经元细胞类型——找到离开眼睛的路,与大脑中的靶标相连。在过去的几十年中,分子和遗传工具的力量,包括遗传操纵小鼠品系的产生,极大地增加了我们对视觉系统塑造所涉及的分子机制的了解。在这里,我们回顾了在控制 RGC 分化、其轴突从视网膜到初级视觉中枢的引导以及建立拓扑图和眼特异性轴突分离所必需的细化过程的机制方面的主要进展。我们还将讨论影响 RGC 轴突生长和引导以及完全功能性视觉系统建立的人类疾病,如白化病和无视神经。