Suppr超能文献

自注意力Next:探索精神分裂症光学相干断层扫描图像检测研究。

Self-AttentionNeXt: Exploring schizophrenic optical coherence tomography image detection investigations.

作者信息

Kaya Mehmet Kaan, Arslan Sermal, Kaya Suheda, Tasci Gulay, Tasci Burak, Ozsoy Filiz, Dogan Sengul, Tuncer Turker

机构信息

Universal Eye Clinic, Elazig 23100, Türkiye.

Department of Psychiatry, Elazig Fethi Sekin City Hospital, Elazig 23100, Türkiye.

出版信息

World J Psychiatry. 2025 Sep 19;15(9):108359. doi: 10.5498/wjp.v15.i9.108359.

Abstract

BACKGROUND

Optical coherence tomography (OCT) enables high-resolution, non-invasive visualization of retinal structures. Recent evidence suggests that retinal layer alterations may reflect central nervous system changes associated with psychiatric disorders such as schizophrenia (SZ).

AIM

To develop an advanced deep learning model to classify OCT images and distinguish patients with SZ from healthy controls using retinal biomarkers.

METHODS

A novel convolutional neural network, Self-AttentionNeXt, was designed by integrating grouped self-attention mechanisms, residual and inverted bottleneck blocks, and a final 1 × 1 convolution for feature refinement. The model was trained and tested on both a custom OCT dataset collected from patients with SZ and a publicly available OCT dataset (OCT2017).

RESULTS

Self-AttentionNeXt achieved 97.0% accuracy on the collected SZ OCT dataset and over 95% accuracy on the public OCT2017 dataset. Gradient-weighted class activation mapping visualizations confirmed the model's attention to clinically relevant retinal regions, suggesting effective feature localization.

CONCLUSION

Self-AttentionNeXt effectively combines transformer-inspired attention mechanisms with convolutional neural networks architecture to support the early and accurate detection of SZ using OCT images. This approach offers a promising direction for artificial intelligence-assisted psychiatric diagnostics and clinical decision support.

摘要

背景

光学相干断层扫描(OCT)能够对视网膜结构进行高分辨率、非侵入性成像。近期证据表明,视网膜层改变可能反映与精神分裂症(SZ)等精神疾病相关的中枢神经系统变化。

目的

开发一种先进的深度学习模型,用于对OCT图像进行分类,并使用视网膜生物标志物区分SZ患者与健康对照。

方法

通过整合分组自注意力机制、残差和倒置瓶颈模块以及用于特征细化的最终1×1卷积,设计了一种新型卷积神经网络Self-AttentionNeXt。该模型在从SZ患者收集的自定义OCT数据集和公开可用的OCT数据集(OCT2017)上进行训练和测试。

结果

Self-AttentionNeXt在收集的SZ OCT数据集上的准确率达到97.0%,在公共OCT2017数据集上的准确率超过95%。梯度加权类激活映射可视化证实了该模型对临床相关视网膜区域的关注,表明有效的特征定位。

结论

Self-AttentionNeXt有效地将受Transformer启发的注意力机制与卷积神经网络架构相结合,以支持使用OCT图像对SZ进行早期和准确的检测。这种方法为人工智能辅助的精神科诊断和临床决策支持提供了一个有前景的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f77/12417991/8a6a18a61fff/wjp-15-9-108359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验