Suppr超能文献

视网膜神经节细胞轴突从视交叉处延伸以启动视束发育需要GAP - 43的细胞自主功能。

Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43.

作者信息

Kruger K, Tam A S, Lu C, Sretavan D W

机构信息

Departments of Ophthalmology and Physiology, University of California, San Francisco, California 94143, USA.

出版信息

J Neurosci. 1998 Aug 1;18(15):5692-705. doi: 10.1523/JNEUROSCI.18-15-05692.1998.

Abstract

Pathfinding mechanisms underlying retinal ganglion cell (RGC) axon growth from the optic chiasm into the optic tract are unknown. Previous work has shown that mouse embryos deficient in GAP-43 have an enlarged optic chiasm within which RGC axons were reportedly stalled. Here we have found that the enlarged chiasm of GAP-43 null mouse embryos appears subsequent to a failure of the earliest RGC axons to progress laterally through the chiasm-tract transition zone to form the optic tract. Previous work has shown that ventral diencephalon CD44/stage-specific embryonic antigen (SSEA) neurons provide guidance information for RGC axons during chiasm formation. Here we found that in the chiasm-tract transition zone, axons of CD44/SSEA neurons precede RGC axons into the lateral diencephalic wall and like RGC axons also express GAP-43. However unlike RGC axons, CD44/SSEA axon trajectories are unaffected in GAP-43 null embryos, indicating that GAP-43-dependent guidance at this site is RGC axon specific or occurs only at specific developmental times. To determine whether the phenotype results from loss of GAP-43 in RGCs or in diencephalon components such as CD44/SSEA axons, wild-type, heterozygous, or homozygous GAP-43 null donor retinal tissues were grafted onto host diencephalons of all three genotypes, and graft axon growth into the optic tract region was assessed. Results show that optic tract development requires cell autonomous GAP-43 function in RGC axons and not in cellular elements of the ventral diencephalon or transition zone.

摘要

视网膜神经节细胞(RGC)轴突从视交叉向视束生长的寻路机制尚不清楚。先前的研究表明,缺乏GAP - 43的小鼠胚胎视交叉扩大,据报道RGC轴突在其中停滞。在这里我们发现,GAP - 43基因敲除小鼠胚胎视交叉扩大出现在最早的RGC轴突未能横向穿过视交叉 - 视束过渡区以形成视束之后。先前的研究表明,腹侧间脑CD44/阶段特异性胚胎抗原(SSEA)神经元在视交叉形成过程中为RGC轴突提供导向信息。在这里我们发现,在视交叉 - 视束过渡区,CD44/SSEA神经元的轴突先于RGC轴突进入外侧间脑壁,并且与RGC轴突一样也表达GAP - 43。然而,与RGC轴突不同,CD44/SSEA轴突轨迹在GAP - 43基因敲除胚胎中不受影响,表示该位点依赖GAP - 43的导向是RGC轴突特异性的,或者仅在特定发育时期发生。为了确定该表型是否是由于RGC中GAP - 43缺失或间脑成分如CD44/SSEA轴突缺失所致,将野生型、杂合型或纯合型GAP - 43基因敲除供体视网膜组织移植到所有三种基因型的宿主间脑上,并评估移植轴突向视束区域的生长情况。结果表明,视束发育需要RGC轴突中细胞自主的GAP - 43功能,而不是腹侧间脑或过渡区的细胞成分中的功能。

相似文献

4
Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice.
J Neurosci. 1999 Nov 15;19(22):9900-12. doi: 10.1523/JNEUROSCI.19-22-09900.1999.
6
Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits.
J Neurosci. 2000 Jul 1;20(13):4975-82. doi: 10.1523/JNEUROSCI.20-13-04975.2000.
7
Specific routing of retinal ganglion cell axons at the mammalian optic chiasm during embryonic development.
J Neurosci. 1990 Jun;10(6):1995-2007. doi: 10.1523/JNEUROSCI.10-06-01995.1990.
8
Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons.
Science. 1995 Jul 7;269(5220):98-101. doi: 10.1126/science.7541558.
10
The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm.
Neural Dev. 2015 Oct 22;10:23. doi: 10.1186/s13064-015-0050-x.

引用本文的文献

1
Proposing a Methodology for Axon-Centric Analysis of IOP-Induced Mechanical Insult.
Invest Ophthalmol Vis Sci. 2024 Nov 4;65(13):1. doi: 10.1167/iovs.65.13.1.
2
Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review.
Front Ophthalmol (Lausanne). 2023 May 17;3:1180142. doi: 10.3389/fopht.2023.1180142. eCollection 2023.
3
An Efficient Method for the Isolation and Cultivation of Hypothalamic Neural Stem/Progenitor Cells From Mouse Embryos.
Front Neuroanat. 2022 Feb 4;16:711138. doi: 10.3389/fnana.2022.711138. eCollection 2022.
4
Atoh7-independent specification of retinal ganglion cell identity.
Sci Adv. 2021 Mar 12;7(11). doi: 10.1126/sciadv.abe4983. Print 2021 Mar.
6
Advances in the study of the peripheral nervous system for erection in animals and humans.
Reprod Med Biol. 2011 May 3;10(3):121-129. doi: 10.1007/s12522-011-0081-x. eCollection 2011 Sep.
7
Molecular guidance cues in the development of visual pathway.
Protein Cell. 2018 Nov;9(11):909-929. doi: 10.1007/s13238-017-0490-7. Epub 2017 Nov 27.
8
Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development.
J Neurosci. 2017 Aug 30;37(35):8444-8458. doi: 10.1523/JNEUROSCI.0665-17.2017. Epub 2017 Aug 1.
9
Connecting the retina to the brain.
ASN Neuro. 2014 Dec 12;6(6). doi: 10.1177/1759091414562107. Print 2014.
10
Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth.
J Neurosci. 2013 Feb 20;33(8):3311-22. doi: 10.1523/JNEUROSCI.1722-12.2013.

本文引用的文献

1
The Course of Fibre Diameter Classes Through the Chiasmatic Region in the Ferret.
Eur J Neurosci. 1990 Jan;2(1):34-49. doi: 10.1111/j.1460-9568.1990.tb00379.x.
3
Glia, neurons, and axon pathfinding during optic chiasm development.
Curr Opin Neurobiol. 1997 Oct;7(5):647-53. doi: 10.1016/s0959-4388(97)80084-0.
5
The Eph receptor family: axonal guidance by contact repulsion.
Trends Genet. 1997 Sep;13(9):354-9. doi: 10.1016/s0168-9525(97)01220-1.
7
Essential role of heparan sulfates in axon navigation and targeting in the developing visual system.
Development. 1997 Jun;124(12):2421-30. doi: 10.1242/dev.124.12.2421.
8
Changing course of growing axons in the optic chiasm of the mouse.
J Comp Neurol. 1997 Mar 24;379(4):495-514. doi: 10.1002/(sici)1096-9861(19970324)379:4<495::aid-cne3>3.0.co;2-y.
9
GAP-43: an intrinsic determinant of neuronal development and plasticity.
Trends Neurosci. 1997 Feb;20(2):84-91. doi: 10.1016/s0166-2236(96)10072-2.
10
Growth cone form is behavior-specific and, consequently, position-specific along the retinal axon pathway.
J Neurosci. 1997 Feb 1;17(3):1086-100. doi: 10.1523/JNEUROSCI.17-03-01086.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验