Vladimirov Nikita, Cohen Ouri, Heo Hye-Young, Zaiss Moritz, Farrar Christian T, Perlman Or
Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.
Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nat Protoc. 2025 Apr 1. doi: 10.1038/s41596-025-01152-w.
Deep learning-based saturation transfer magnetic resonance fingerprinting (MRF) is an emerging approach for noninvasive in vivo imaging of proteins, metabolites and pH. It involves a series of steps, including sample/participant preparation, image acquisition schedule design, biophysical model formulation and artificial intelligence and computational model training, followed by image acquisition, deep reconstruction and analysis. Saturation transfer-based molecular MRI has been slow to reach clinical maturity and adoption for clinical practice due to its technical complexity, semi-quantitative contrast-weighted nature and long scan times needed for the extraction of quantitative molecular biomarkers. Deep MRF provides solutions to these challenges by providing a quantitative and rapid framework for extracting biologically and clinically meaningful molecular information. Here we define a complete protocol for quantitative molecular MRI using deep MRF. We describe in vitro sample preparation and animal and human scan considerations, and provide intuition behind the acquisition protocol design and optimization of chemical exchange saturation transfer (CEST) and semi-solid magnetization transfer (MT) quantitative imaging. We then extensively describe the building blocks for several artificial intelligence models and demonstrate their performance for different applications, including cancer monitoring, brain myelin imaging and pH quantification. Finally, we provide guidelines to further modify and expand the pipeline for imaging a variety of other pathologies (such as neurodegeneration, stroke and cardiac disease), accompanied by the related open-source code and sample data. The procedure takes between 48 min (for two proton pools or in vitro imaging) and 57 h (for complex multi-proton pool in vivo imaging) to complete and is suitable for graduate student-level users.
基于深度学习的饱和转移磁共振指纹成像(MRF)是一种用于蛋白质、代谢物和pH值无创体内成像的新兴方法。它涉及一系列步骤,包括样本/参与者准备、图像采集计划设计、生物物理模型制定以及人工智能和计算模型训练,随后进行图像采集、深度重建和分析。基于饱和转移的分子磁共振成像由于其技术复杂性、半定量对比加权性质以及提取定量分子生物标志物所需的长时间扫描,在临床成熟度和临床应用方面进展缓慢。深度MRF通过提供一个定量且快速的框架来提取具有生物学和临床意义的分子信息,从而为这些挑战提供了解决方案。在这里,我们定义了一个使用深度MRF进行定量分子磁共振成像的完整方案。我们描述了体外样本制备以及动物和人体扫描的注意事项,并给出了采集方案设计以及化学交换饱和转移(CEST)和半固体磁化转移(MT)定量成像优化背后的原理。然后,我们广泛描述了几种人工智能模型的组成部分,并展示了它们在不同应用中的性能,包括癌症监测、脑髓鞘成像和pH值定量。最后,我们提供了进一步修改和扩展该流程以对多种其他病理情况(如神经退行性疾病、中风和心脏病)进行成像的指导方针,并附带相关的开源代码和样本数据。该流程需要48分钟(用于两个质子池或体外成像)到57小时(用于复杂的多质子池体内成像)才能完成,适合研究生水平的用户。