Suppr超能文献

通过萘的热分解掺杂的磷酸三钙支架:兔股骨模型中的力学性能和体内成骨作用

Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.

作者信息

Ke Dongxu, Dernell William, Bandyopadhyay Amit, Bose Susmita

机构信息

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164-2920.

出版信息

J Biomed Mater Res B Appl Biomater. 2015 Nov;103(8):1549-59. doi: 10.1002/jbm.b.33321. Epub 2014 Dec 15.

Abstract

Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64% ± 3.54% density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2 , pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression, and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity, while maintaining high compressive mechanical strength and excellent bioactivity. Results show that SrO/SiO2 -doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications.

摘要

磷酸三钙(TCP)是一种生物陶瓷,广泛应用于骨科和牙科领域。TCP结构具有出色的生物相容性和生物降解性。在本研究中,通过萘的热分解制备了多孔β-TCP支架。通过在1150°C下去除30%的萘,制备出密度为57.64%±3.54%、最大孔径约为100μm的支架。这些支架的抗压强度为32.85±1.41MPa。此外,通过混合1wt%的SrO和0.5wt%的SiO2,孔隙连通性得到改善,但抗压强度降至22.40±2.70MPa。然而,添加聚己内酯涂层后,掺杂支架的抗压强度提高到29.57±3.77MPa。将多孔支架植入兔股骨缺损处以评估其生物学特性。掺杂剂的添加通过增强类骨质形成、骨钙素表达和骨再生来引发骨诱导,尤其是在支架与宿主骨的界面处。本研究表明,在保持高抗压机械强度和优异生物活性的同时,具有制备不同孔径和孔隙率体积分数的相互连通多孔支架的加工灵活性。结果表明,SrO/SiO2掺杂的多孔TCP支架在骨组织工程应用中具有优异的潜力。

相似文献

1
Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
J Biomed Mater Res B Appl Biomater. 2015 Nov;103(8):1549-59. doi: 10.1002/jbm.b.33321. Epub 2014 Dec 15.
2
SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
J Biomed Mater Res B Appl Biomater. 2015 Apr;103(3):679-90. doi: 10.1002/jbm.b.33239. Epub 2014 Jul 8.
3
Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
ACS Appl Mater Interfaces. 2020 Jul 22;12(29):32340-32351. doi: 10.1021/acsami.0c07304. Epub 2020 Jul 10.
7
Low temperature fabrication of high strength porous calcium phosphate and the evaluation of the osteoconductivity.
J Mater Sci Mater Med. 2009 Oct;20(10):2025-34. doi: 10.1007/s10856-009-3764-7. Epub 2009 May 8.
9
Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
J Tissue Eng Regen Med. 2013 Aug;7(8):631-41. doi: 10.1002/term.555. Epub 2012 Mar 7.
10
Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110694. doi: 10.1016/j.msec.2020.110694. Epub 2020 Jan 28.

引用本文的文献

1
Improvement of Metal-Doped β-TCP Scaffolds for Active Bone Substitutes via Ultra-Short Laser Structuring.
Bioengineering (Basel). 2023 Dec 6;10(12):1392. doi: 10.3390/bioengineering10121392.
2
Micro-porous PLGA/-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes.
Regen Biomater. 2023 Sep 14;10:rbad084. doi: 10.1093/rb/rbad084. eCollection 2023.
3
Synthetic materials in craniofacial regenerative medicine: A comprehensive overview.
Front Bioeng Biotechnol. 2022 Nov 9;10:987195. doi: 10.3389/fbioe.2022.987195. eCollection 2022.
7
Thermal Oxide Layer Enhances Crystallinity and Mechanical Properties for Plasma-Sprayed Hydroxyapatite Biomedical Coatings.
ACS Appl Mater Interfaces. 2020 Jul 29;12(30):33465-33472. doi: 10.1021/acsami.0c05035. Epub 2020 Jul 15.
8
The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical Studies: A Systematic Review.
Materials (Basel). 2020 Mar 25;13(7):1500. doi: 10.3390/ma13071500.
9
Additive manufacturing of biomaterials.
Prog Mater Sci. 2018 Apr;93:45-111. doi: 10.1016/j.pmatsci.2017.08.003. Epub 2017 Aug 26.

本文引用的文献

3
Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
J Tissue Eng Regen Med. 2013 Aug;7(8):631-41. doi: 10.1002/term.555. Epub 2012 Mar 7.
6
Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.
Bone. 2011 Jun 1;48(6):1282-90. doi: 10.1016/j.bone.2011.03.685. Epub 2011 Mar 16.
7
Silicon: The key element in early stages of biocalcification.
J Struct Biol. 2011 Apr;174(1):180-6. doi: 10.1016/j.jsb.2010.09.025. Epub 2010 Oct 12.
9
Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.
Acta Biomater. 2010 Oct;6(10):4167-74. doi: 10.1016/j.actbio.2010.05.012. Epub 2010 May 20.
10
New processing approaches in calcium phosphate cements and their applications in regenerative medicine.
Acta Biomater. 2010 Aug;6(8):2863-73. doi: 10.1016/j.actbio.2010.01.036. Epub 2010 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验