Suppr超能文献

家族中纵向表型的双变量关联分析。

Bivariate association analysis of longitudinal phenotypes in families.

作者信息

Melton Phillip E, Almasy Laura A

机构信息

Centre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Australia.

Department of Genetics, Texas Biomedical Research Institute, San Antonio, USA.

出版信息

BMC Proc. 2014 Jun 17;8(Suppl 1):S90. doi: 10.1186/1753-6561-8-S1-S90. eCollection 2014.

Abstract

Statistical genetic methods incorporating temporal variation allow for greater understanding of genetic architecture and consistency of biological variation influencing development of complex diseases. This study proposes a bivariate association method jointly testing association of two quantitative phenotypic measures from different time points. Measured genotype association was analyzed for single-nucleotide polymorphisms (SNPs) for systolic blood pressure (SBP) from the first and third visits using 200 simulated Genetic Analysis Workshop 18 (GAW18) replicates. Bivariate association, in which the effect of an SNP on the mean trait values of the two phenotypes is constrained to be equal for both measures and is included as a covariate in the analysis, was compared with a bivariate analysis in which the effect of an SNP was estimated separately for the two measures and univariate association analyses in 9 SNPs that explained greater than 0.001% SBP variance over all 200 GAW18 replicates.The SNP 3_48040283 was significantly associated with SBP in all 200 replicates with the constrained bivariate method providing increased signal over the unconstrained bivariate method. This method improved signal in all 9 SNPs with simulated effects on SBP for nominal significance (p-value <0.05). However, this appears to be determined by the effect size of the SNP on the phenotype. This bivariate association method applied to longitudinal data improves genetic signal for quantitative traits when the effect size of the variant is moderate to large.

摘要

纳入时间变化的统计遗传方法有助于更深入地理解影响复杂疾病发展的遗传结构和生物变异的一致性。本研究提出了一种双变量关联方法,用于联合检验来自不同时间点的两个定量表型测量值之间的关联。使用200个模拟的遗传分析研讨会18(GAW18)重复样本,分析了首次和第三次就诊时收缩压(SBP)单核苷酸多态性(SNP)的测量基因型关联。将双变量关联(其中SNP对两种表型平均性状值的影响在两种测量中被约束为相等,并作为协变量纳入分析)与另一种双变量分析(其中分别估计SNP对两种测量的影响)以及对9个SNP的单变量关联分析进行比较,这9个SNP在所有200个GAW18重复样本中解释的SBP方差大于0.001%。在所有200个重复样本中,SNP 3_48040283与SBP显著相关,与无约束双变量方法相比,约束双变量方法提供了更强的信号。对于名义显著性(p值<0.05),该方法在所有9个对SBP有模拟效应的SNP中都增强了信号。然而,这似乎取决于SNP对表型的效应大小。当变异的效应大小为中等至大时,这种应用于纵向数据的双变量关联方法可改善数量性状的遗传信号。

相似文献

1
Bivariate association analysis of longitudinal phenotypes in families.
BMC Proc. 2014 Jun 17;8(Suppl 1):S90. doi: 10.1186/1753-6561-8-S1-S90. eCollection 2014.
2
Constrained multivariate association with longitudinal phenotypes.
BMC Proc. 2016 Oct 18;10(Suppl 7):329-332. doi: 10.1186/s12919-016-0051-8. eCollection 2016.
3
Longitudinal analytical approaches to genetic data.
BMC Genet. 2016 Feb 3;17 Suppl 2(Suppl 2):4. doi: 10.1186/s12863-015-0312-y.
4
Mixed-effects models for GAW18 longitudinal blood pressure data.
BMC Proc. 2014 Jun 17;8(Suppl 1):S87. doi: 10.1186/1753-6561-8-S1-S87. eCollection 2014.
8
Bivariate association analysis for quantitative traits using generalized estimation equation.
J Genet Genomics. 2009 Dec;36(12):733-43. doi: 10.1016/S1673-8527(08)60166-6.
9
Bivariate linear mixed model analysis to test joint associations of genetic variants on systolic and diastolic blood pressure.
BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S75. doi: 10.1186/1753-6561-8-S1-S75. eCollection 2014.
10
Genetic signal maximization using environmental regression.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S72. doi: 10.1186/1753-6561-5-S9-S72.

引用本文的文献

1
Constrained multivariate association with longitudinal phenotypes.
BMC Proc. 2016 Oct 18;10(Suppl 7):329-332. doi: 10.1186/s12919-016-0051-8. eCollection 2016.
2
Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Samples.
Hum Hered. 2015;80(3):126-38. doi: 10.1159/000445057. Epub 2016 Apr 29.

本文引用的文献

2
Longitudinal association analysis of quantitative traits.
Genet Epidemiol. 2012 Dec;36(8):856-69. doi: 10.1002/gepi.21673. Epub 2012 Sep 10.
3
Genome-wide association mapping with longitudinal data.
Genet Epidemiol. 2012 Jul;36(5):463-71. doi: 10.1002/gepi.21640. Epub 2012 May 11.
5
Bivariate genetic association of KIAA1797 with heart rate in American Indians: the Strong Heart Family Study.
Hum Mol Genet. 2010 Sep 15;19(18):3662-71. doi: 10.1093/hmg/ddq274. Epub 2010 Jul 3.
6
On the replication of genetic associations: timing can be everything!
Am J Hum Genet. 2008 Apr;82(4):849-58. doi: 10.1016/j.ajhg.2008.01.018.
8
Quantitative trait nucleotide analysis using Bayesian model selection.
Hum Biol. 2005 Oct;77(5):541-59. doi: 10.1353/hub.2006.0003.
10
Multipoint quantitative-trait linkage analysis in general pedigrees.
Am J Hum Genet. 1998 May;62(5):1198-211. doi: 10.1086/301844.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验