Suppr超能文献

针对人群和家庭样本纵向数据的罕见变异核机器检验

Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Samples.

作者信息

Yan Qi, Weeks Daniel E, Tiwari Hemant K, Yi Nengjun, Zhang Kui, Gao Guimin, Lin Wan-Yu, Lou Xiang-Yang, Chen Wei, Liu Nianjun

机构信息

Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pa., USA.

出版信息

Hum Hered. 2015;80(3):126-38. doi: 10.1159/000445057. Epub 2016 Apr 29.

Abstract

OBJECTIVE

The kernel machine (KM) test reportedly performs well in the set-based association test of rare variants. Many studies have been conducted to measure phenotypes at multiple time points, but the standard KM methodology has only been available for phenotypes at a single time point. In addition, family-based designs have been widely used in genetic association studies; therefore, the data analysis method used must appropriately handle familial relatedness. A rare-variant test does not currently exist for longitudinal data from family samples. Therefore, in this paper, we aim to introduce an association test for rare variants, which includes multiple longitudinal phenotype measurements for either population or family samples.

METHODS

This approach uses KM regression based on the linear mixed model framework and is applicable to longitudinal data from either population (L-KM) or family samples (LF-KM).

RESULTS

In our population-based simulation studies, L-KM has good control of Type I error rate and increased power in all the scenarios we considered compared with other competing methods. Conversely, in the family-based simulation studies, we found an inflated Type I error rate when L-KM was applied directly to the family samples, whereas LF-KM retained the desired Type I error rate and had the best power performance overall. Finally, we illustrate the utility of our proposed LF-KM approach by analyzing data from an association study between rare variants and blood pressure from the Genetic Analysis Workshop 18 (GAW18).

CONCLUSION

We propose a method for rare-variant association testing in population and family samples using phenotypes measured at multiple time points for each subject. The proposed method has the best power performance compared to competing approaches in our simulation study.

摘要

目的

据报道,核机器(KM)检验在罕见变异的基于集合的关联检验中表现良好。已经开展了许多研究来在多个时间点测量表型,但标准的KM方法仅适用于单个时间点的表型。此外,基于家系的设计已广泛应用于基因关联研究;因此,所使用的数据分析方法必须适当地处理家族相关性。目前不存在针对家系样本纵向数据的罕见变异检验。因此,在本文中,我们旨在引入一种针对罕见变异的关联检验,该检验包括针对人群或家系样本的多个纵向表型测量。

方法

该方法使用基于线性混合模型框架的KM回归,适用于来自人群(L-KM)或家系样本(LF-KM)的纵向数据。

结果

在我们基于人群的模拟研究中,与其他竞争方法相比,L-KM在我们考虑的所有情景中对I型错误率有良好的控制且功效增加。相反,在基于家系的模拟研究中,我们发现将L-KM直接应用于家系样本时I型错误率膨胀,而LF-KM保持了所需的I型错误率且总体上具有最佳的功效表现。最后,我们通过分析来自遗传分析研讨会18(GAW18)的罕见变异与血压关联研究的数据来说明我们提出的LF-KM方法的效用。

结论

我们提出了一种在人群和家系样本中使用每个受试者在多个时间点测量的表型进行罕见变异关联检验的方法。在我们的模拟研究中,与竞争方法相比,所提出的方法具有最佳的功效表现。

相似文献

1
Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Samples.
Hum Hered. 2015;80(3):126-38. doi: 10.1159/000445057. Epub 2016 Apr 29.
4
Testing genetic association with rare and common variants in family data.
Genet Epidemiol. 2014 Sep;38 Suppl 1(0 1):S37-43. doi: 10.1002/gepi.21823.
5
A novel rare variants association test for binary traits in family-based designs via copulas.
Stat Methods Med Res. 2023 Nov;32(11):2096-2122. doi: 10.1177/09622802231197977. Epub 2023 Oct 13.
6
A rare variant association test in family-based designs and non-normal quantitative traits.
Stat Med. 2016 Mar 15;35(6):905-21. doi: 10.1002/sim.6750. Epub 2015 Sep 29.
7
Adjusted sequence kernel association test for rare variants controlling for cryptic and family relatedness.
Genet Epidemiol. 2013 May;37(4):366-76. doi: 10.1002/gepi.21725. Epub 2013 Mar 25.
9
Leveraging population information in family-based rare variant association analyses of quantitative traits.
Genet Epidemiol. 2017 Feb;41(2):98-107. doi: 10.1002/gepi.22022. Epub 2016 Dec 5.
10
Likelihood ratio tests in rare variant detection for continuous phenotypes.
Ann Hum Genet. 2014 Sep;78(5):320-32. doi: 10.1111/ahg.12071.

引用本文的文献

1
The sequence kernel association test for the proportional odds model.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf304.
3
Gene-based association tests in family samples using GWAS summary statistics.
Genet Epidemiol. 2024 Apr;48(3):103-113. doi: 10.1002/gepi.22548. Epub 2024 Feb 5.
5
Gene Region Association Analysis of Longitudinal Quantitative Traits Based on a Function-On-Function Regression Model.
Front Genet. 2022 Feb 21;13:781740. doi: 10.3389/fgene.2022.781740. eCollection 2022.
6
A review of kernel methods for genetic association studies.
Genet Epidemiol. 2019 Mar;43(2):122-136. doi: 10.1002/gepi.22180. Epub 2019 Jan 2.
7
KMgene: a unified R package for gene-based association analysis for complex traits.
Bioinformatics. 2018 Jun 15;34(12):2144-2146. doi: 10.1093/bioinformatics/bty066.
9
Longitudinal SNP-set association analysis of quantitative phenotypes.
Genet Epidemiol. 2017 Jan;41(1):81-93. doi: 10.1002/gepi.22016. Epub 2016 Nov 9.
10
The impact of genotype calling errors on family-based studies.
Sci Rep. 2016 Jun 22;6:28323. doi: 10.1038/srep28323.

本文引用的文献

3
Detecting association of rare and common variants by testing an optimally weighted combination of variants with longitudinal data.
BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S91. doi: 10.1186/1753-6561-8-S1-S91. eCollection 2014.
4
A multi-level model for analyzing whole genome sequencing family data with longitudinal traits.
BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S86. doi: 10.1186/1753-6561-8-S1-S86. eCollection 2014.
5
Fast genome-wide pedigree quantitative trait loci analysis using MENDEL.
BMC Proc. 2014 Jun 17;8(Suppl 1):S93. doi: 10.1186/1753-6561-8-S1-S93. eCollection 2014.
6
Mixed-effects models for joint modeling of sequence data in longitudinal studies.
BMC Proc. 2014 Jun 17;8(Suppl 1):S92. doi: 10.1186/1753-6561-8-S1-S92. eCollection 2014.
7
Bivariate association analysis of longitudinal phenotypes in families.
BMC Proc. 2014 Jun 17;8(Suppl 1):S90. doi: 10.1186/1753-6561-8-S1-S90. eCollection 2014.
8
Summary of results and discussions from the gene-based tests group at Genetic Analysis Workshop 18.
Genet Epidemiol. 2014 Sep;38 Suppl 1(Suppl 1):S44-8. doi: 10.1002/gepi.21824.
9
Testing genetic association with rare and common variants in family data.
Genet Epidemiol. 2014 Sep;38 Suppl 1(0 1):S37-43. doi: 10.1002/gepi.21823.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验