Suppr超能文献

估计可解释方差的比例:全基因组子集的比较

Estimating proportions of explained variance: a comparison of whole genome subsets.

作者信息

Aslibekyan Stella, Wiener Howard W, Wu Guodong, Zhi Degui, Shrestha Sadeep, de Los Campos Gustavo, Vazquez Ana I

机构信息

Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35205, USA.

Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35205, USA.

出版信息

BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S102. doi: 10.1186/1753-6561-8-S1-S102. eCollection 2014.

Abstract

Following the publication of the ENCODE project results, there has been increasing interest in investigating different areas of the chromosome and evaluating the relative contribution of each area to expressed phenotypes. This study aims to evaluate the contribution of variants, classified by minor allele frequency and gene annotation, to the observed interindividual differences. In this study, we fitted Bayesian linear regression models to data from Genetic Analysis Workshop 18 (n = 395) to estimate the variance of standardized and log-transformed systolic blood pressure that can be explained by subsets of genetic markers. Rare and very rare variants explained an overall higher proportion of the variance, as did markers located within a gene rather than flanking regions. The proportion of variance explained by rare and very rare variants decreased when we controlled for the number of markers, suggesting that the number of contributing rare alleles plays an important role in the genetic architecture of chronic disease traits. Our findings lend support to the "common disease, rare variant" hypothesis for systolic blood pressure and highlight allele frequency and functional annotation of a polymorphism as potentially crucial considerations in whole genome study designs.

摘要

随着ENCODE项目结果的公布,人们对研究染色体的不同区域以及评估每个区域对表达表型的相对贡献越来越感兴趣。本研究旨在评估按次要等位基因频率和基因注释分类的变异对观察到的个体间差异的贡献。在本研究中,我们将贝叶斯线性回归模型应用于遗传分析研讨会18的数据(n = 395),以估计标准化和对数转换后的收缩压方差,这些方差可由遗传标记子集解释。罕见和非常罕见的变异解释的方差总体比例更高,位于基因内而非侧翼区域的标记也是如此。当我们控制标记数量时,由罕见和非常罕见变异解释的方差比例下降,这表明起作用的罕见等位基因数量在慢性病性状的遗传结构中起着重要作用。我们的发现支持收缩压的“常见疾病,罕见变异”假说,并强调多态性的等位基因频率和功能注释是全基因组研究设计中潜在的关键考虑因素。

相似文献

1
Estimating proportions of explained variance: a comparison of whole genome subsets.估计可解释方差的比例:全基因组子集的比较
BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S102. doi: 10.1186/1753-6561-8-S1-S102. eCollection 2014.

本文引用的文献

3
Rare and common variants: twenty arguments.罕见和常见变异体:二十个论点。
Nat Rev Genet. 2012 Jan 18;13(2):135-45. doi: 10.1038/nrg3118.
5
The variant call format and VCFtools.变异调用格式和 VCFtools。
Bioinformatics. 2011 Aug 1;27(15):2156-8. doi: 10.1093/bioinformatics/btr330. Epub 2011 Jun 7.
7
The genetics of blood pressure and hypertension: the role of rare variation.血压和高血压的遗传学:稀有变异的作用。
Cardiovasc Ther. 2011 Feb;29(1):37-45. doi: 10.1111/j.1755-5922.2010.00246.x. Epub 2010 Dec 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验