Maier Lisa, Diard Médéric, Sellin Mikael E, Chouffane Elsa-Sarah, Trautwein-Weidner Kerstin, Periaswamy Balamurugan, Slack Emma, Dolowschiak Tamas, Stecher Bärbel, Loverdo Claude, Regoes Roland R, Hardt Wolf-Dietrich
Eidgenössische Technische Hochschule Zürich, Institute of Microbiology, Zurich, Switzerland.
Max von Pettenkofer-Institut, München, Germany; German Center for Infection Research (DZIF), partner site Ludwig Maximilian University of Munich, Munich, Germany.
PLoS Pathog. 2014 Dec 18;10(12):e1004557. doi: 10.1371/journal.ppat.1004557. eCollection 2014 Dec.
Topological, chemical and immunological barriers are thought to limit infection by enteropathogenic bacteria. However, in many cases these barriers and their consequences for the infection process remain incompletely understood. Here, we employed a mouse model for Salmonella colitis and a mixed inoculum approach to identify barriers limiting the gut luminal pathogen population. Mice were infected via the oral route with wild type S. Typhimurium (S. Tm) and/or mixtures of phenotypically identical but differentially tagged S. Tm strains ("WITS", wild-type isogenic tagged strains), which can be individually tracked by quantitative real-time PCR. WITS dilution experiments identified a substantial loss in tag/genetic diversity within the gut luminal S. Tm population by days 2-4 post infection. The diversity-loss was not attributable to overgrowth by S. Tm mutants, but required inflammation, Gr-1+ cells (mainly neutrophilic granulocytes) and most likely NADPH-oxidase-mediated defense, but not iNOS. Mathematical modelling indicated that inflammation inflicts a bottleneck transiently restricting the gut luminal S. Tm population to approximately 6000 cells and plating experiments verified a transient, inflammation- and Gr-1+ cell-dependent dip in the gut luminal S. Tm population at day 2 post infection. We conclude that granulocytes, an important clinical hallmark of S. Tm-induced inflammation, impose a drastic bottleneck upon the pathogen population. This extends the current view of inflammation-fuelled gut-luminal Salmonella growth by establishing the host response in the intestinal lumen as a double-edged sword, fostering and diminishing colonization in a dynamic equilibrium. Our work identifies a potent immune defense against gut infection and reveals a potential Achilles' heel of the infection process which might be targeted for therapy.
拓扑学、化学和免疫屏障被认为会限制肠道致病菌的感染。然而,在许多情况下,这些屏障及其对感染过程的影响仍未完全明了。在此,我们采用了一种沙门氏菌结肠炎小鼠模型和混合接种方法来确定限制肠道腔内病原菌数量的屏障。通过口服途径用野生型鼠伤寒沙门氏菌(S. Tm)和/或表型相同但带有不同标记的S. Tm菌株混合物(“WITS”,野生型同基因标记菌株)感染小鼠,这些菌株可通过定量实时PCR进行单独追踪。WITS稀释实验表明,感染后2 - 4天,肠道腔内S. Tm菌群体内的标记/遗传多样性大幅丧失。这种多样性丧失并非由S. Tm突变体的过度生长所致,而是需要炎症、Gr - 1⁺细胞(主要是嗜中性粒细胞)以及很可能是NADPH氧化酶介导的防御,但不需要诱导型一氧化氮合酶(iNOS)。数学模型表明,炎症造成了一个瓶颈,将肠道腔内S. Tm菌群体暂时限制在约6000个细胞,平板实验证实感染后第2天肠道腔内S. Tm菌群体出现了短暂的、依赖于炎症和Gr - 1⁺细胞的下降。我们得出结论,粒细胞作为S. Tm诱导炎症的一个重要临床标志,对病原菌群体造成了严重的瓶颈效应。这通过将肠腔内的宿主反应确立为一把双刃剑,在动态平衡中促进和减少定植,扩展了当前对炎症驱动的肠道腔内沙门氏菌生长的认识。我们的工作确定了一种针对肠道感染的有效免疫防御,并揭示了感染过程中一个潜在的致命弱点,可能成为治疗靶点。