Suppr超能文献

嗜热、无细胞色素产乙酸菌基维嗜热厌氧杆菌能量守恒的基因组导向分析。

A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui.

作者信息

Hess Verena, Poehlein Anja, Weghoff Marie Charlotte, Daniel Rolf, Müller Volker

机构信息

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str, 9, 60438 Frankfurt, Germany.

出版信息

BMC Genomics. 2014 Dec 18;15(1):1139. doi: 10.1186/1471-2164-15-1139.

Abstract

BACKGROUND

Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2+CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui.

RESULTS

The genome of Thermoanaerobacter kivui comprises 2.9 Mbp with a G+C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2+CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO ATP synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech).

CONCLUSIONS

The thermophilic acetogen T. kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2+CO2 make T. kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.

摘要

背景

产乙酸菌能够利用二氧化碳作为厌氧呼吸的终端电子受体,从而利用来自氢气的电子产生乙酸盐。由于这一特性,产乙酸菌成为了利用氢气+二氧化碳和/或一氧化碳等废气生产生物产品的平台。代谢工程的一个先决条件是详细了解ATP合成和电子转移反应的机制,以确保氧化还原稳态。产乙酸过程涉及通过可溶性酶将二氧化碳还原为乙酸盐,并通过化学渗透机制与能量守恒相偶联。几十年来,作为离子泵的膜结合模块一直备受关注,最近,在伍氏醋杆菌中发现Rnf复合物能将还原型铁氧化还原蛋白的电子流与NAD+的还原以及钠离子的输出相偶联。然而,并非所有产乙酸菌的基因组中都有rnf基因。为了进一步深入了解不含Rnf的嗜热产乙酸菌的能量守恒机制,我们对嗜热栖热厌氧菌的基因组进行了测序。

结果

嗜热栖热厌氧菌的基因组由290万个碱基对组成,G+C含量为35%,编码2378个蛋白质的开放阅读框。自养生长以及从氢气+二氧化碳生成乙酸盐均不依赖于钠离子,并且质子载体抑制了乙酸盐的生成,这表明氢离子被用作初级生物能量学的偶联离子。这与F1FO ATP合酶的c亚基不具有保守的钠离子结合基序这一发现一致。对潜在的氢离子转运膜结合蛋白复合物的搜索揭示了可能编码两种不同的质子还原、能量守恒氢化酶(Ech)的基因。

结论

嗜热产乙酸菌嗜热栖热厌氧菌不利用钠离子而是利用氢离子进行化学渗透ATP合成。它不含有细胞色素,并且电化学质子梯度很可能是由能量守恒氢化酶(Ech)建立的。其嗜热特性以及对氢气+二氧化碳的高效转化使得嗜热栖热厌氧菌成为工业微生物学中用于生产生物产品的一种有趣的产乙酸菌。此外,我们的实验数据以及越来越多的产乙酸菌测序基因组支持了将产乙酸菌分为两组的新分类:含Rnf和含Ech的产乙酸菌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8097/4320612/bb77efae2a4f/12864_2014_6909_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验