Suppr超能文献

超越安全港:自动发现健康信息去识别化政策替代方案。

Beyond Safe Harbor: Automatic Discovery of Health Information De-identification Policy Alternatives.

作者信息

Benitez Kathleen, Loukides Grigorios, Malin Bradley

出版信息

IHI. 2010;2010:163-172. doi: 10.1145/1882992.1883017.

Abstract

Regulations in various countries permit the reuse of health information without patient authorization provided the data is "de-identified". In the United States, for instance, the Privacy Rule of the Health Insurance Portability and Accountability Act defines two distinct approaches to achieve de-identification; the first is , which requires the removal of a list of identifiers and the second is , which requires that an expert certify the re-identification risk inherent in the data is sufficiently low. In reality, most healthcare organizations eschew the expert route because there are no standardized approaches and Safe Harbor is much simpler to interpret. This, however, precludes a wide range of worthwhile endeavors that are dependent on features suppressed by Safe Harbor, such as gerontological studies requiring detailed ages over 89. In response, we propose a novel approach to automatically discover alternative de-identification policies that contain no more re-identification risk than Safe Harbor. We model this task as a lattice-search problem, introduce a measure to capture the re-identification risk, and develop an algorithm that efficiently discovers polices by exploring the lattice. Using a cohort of approximately 3000 patient records from the Vanderbilt University Medical Center, as well as the Adult dataset from the UCI Machine Learning Repository, we also experimentally verify that a large number of alternative policies can be discovered in an efficient manner.

摘要

各国法规允许在未经患者授权的情况下重复使用健康信息,前提是数据已“去标识化”。例如,在美国,《健康保险流通与责任法案》的隐私规则定义了两种不同的去标识化方法;第一种是,要求删除一系列标识符,第二种是,要求专家证明数据中固有的重新识别风险足够低。实际上,大多数医疗保健组织都避开专家途径,因为没有标准化方法,而且“安全港”更容易解释。然而,这排除了一系列依赖于“安全港”所抑制特征的有价值的努力,比如需要详细的89岁以上年龄的老年学研究。作为回应,我们提出了一种新颖的方法来自动发现替代的去标识化策略,这些策略的重新识别风险不高于“安全港”。我们将此任务建模为格搜索问题,引入一种度量来捕捉重新识别风险,并开发一种通过探索格来有效发现策略的算法。使用范德堡大学医学中心的大约3000份患者记录以及加州大学欧文分校机器学习库的成人数据集,我们还通过实验验证了可以高效地发现大量替代策略。

相似文献

4
R-U policy frontiers for health data de-identification.健康数据去识别化的R-U政策前沿
J Am Med Inform Assoc. 2015 Sep;22(5):1029-41. doi: 10.1093/jamia/ocv004. Epub 2015 Apr 24.
7
Patient Privacy in the Era of Big Data.大数据时代的患者隐私
Balkan Med J. 2018 Jan 20;35(1):8-17. doi: 10.4274/balkanmedj.2017.0966. Epub 2017 Sep 13.
9
Automated de-identification of free-text medical records.自由文本医疗记录的自动去识别化
BMC Med Inform Decis Mak. 2008 Jul 24;8:32. doi: 10.1186/1472-6947-8-32.

引用本文的文献

1
Retinal Scans and Data Sharing: The Privacy and Scientific Development Equilibrium.视网膜扫描与数据共享:隐私与科学发展的平衡
Mayo Clin Proc Digit Health. 2023 Mar 25;1(2):67-74. doi: 10.1016/j.mcpdig.2023.02.003. eCollection 2023 Jun.
4
R-U policy frontiers for health data de-identification.健康数据去识别化的R-U政策前沿
J Am Med Inform Assoc. 2015 Sep;22(5):1029-41. doi: 10.1093/jamia/ocv004. Epub 2015 Apr 24.
5
A game theoretic framework for analyzing re-identification risk.一种用于分析重新识别风险的博弈论框架。
PLoS One. 2015 Mar 25;10(3):e0120592. doi: 10.1371/journal.pone.0120592. eCollection 2015.
8
Privacy-preserving heterogeneous health data sharing.隐私保护的异构健康数据共享。
J Am Med Inform Assoc. 2013 May 1;20(3):462-9. doi: 10.1136/amiajnl-2012-001027. Epub 2012 Dec 13.

本文引用的文献

6
Protecting privacy using k-anonymity.使用 k-匿名保护隐私。
J Am Med Inform Assoc. 2008 Sep-Oct;15(5):627-37. doi: 10.1197/jamia.M2716. Epub 2008 Jun 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验