Suppr超能文献

在估计潜在类别对远端结局的影响时处理混杂因素

ADDRESSING CONFOUNDING WHEN ESTIMATING THE EFFECTS OF LATENT CLASSES ON A DISTAL OUTCOME.

作者信息

Schuler Megan S, Leoutsakos Jeannie-Marie S, Stuart Elizabeth A

机构信息

Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, phone: 803-730-3476, fax: 814-863-0000.

Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224.

出版信息

Health Serv Outcomes Res Methodol. 2014 Dec;14(4):232-254. doi: 10.1007/s10742-014-0122-0.

Abstract

Confounding is widely recognized in settings where all variables are fully observed, yet recognition of and statistical methods to address confounding in the context of latent class regression are slowly emerging. In this study we focus on confounding when regressing a distal outcome on latent class; extending standard confounding methods is not straightforward when the treatment of interest is a latent variable. We describe a recent 1-step method, as well as two 3-step methods (modal and pseudoclass assignment) that incorporate propensity score weighting. Using simulated data, we compare the performance of these three adjusted methods to an unadjusted 1-step and unadjusted 3-step method. We also present an applied example regarding adolescent substance use treatment that examines the effect of treatment service class on subsequent substance use problems. Our simulations indicated that the adjusted 1-step method and both adjusted 3-step methods significantly reduced bias arising from confounding relative to the unadjusted 1-step and 3-step approaches. However, the adjusted 1-step method performed better than the adjusted 3-step methods with regard to bias and 95% CI coverage, particularly when class separation was poor. Our applied example also highlighted the importance of addressing confounding - both unadjusted methods indicated significant differences across treatment classes with respect to the outcome, yet these class differences were not significant when using any of the three adjusted methods. Potential confounding should be carefully considered when conducting latent class regression with a distal outcome; failure to do so may results in significantly biased effect estimates or incorrect inferences.

摘要

混杂因素在所有变量都能被完全观测到的情况下已得到广泛认可,但在潜在类别回归背景下对混杂因素的认识以及解决混杂问题的统计方法正在缓慢兴起。在本研究中,我们关注在潜在类别上对远端结局进行回归时的混杂因素;当感兴趣的处理是一个潜在变量时,扩展标准的混杂方法并非易事。我们描述了一种最近的一步法,以及两种纳入倾向得分加权的三步法(模态和伪类别分配)。使用模拟数据,我们将这三种调整方法的性能与未调整的一步法和未调整的三步法进行比较。我们还给出了一个关于青少年物质使用治疗的应用实例,该实例考察了治疗服务类别对后续物质使用问题的影响。我们的模拟表明,相对于未调整的一步法和三步法,调整后的一步法以及两种调整后的三步法都显著降低了由混杂因素引起的偏差。然而,在偏差和95%置信区间覆盖方面,调整后的一步法比调整后的三步法表现更好,尤其是在类别分离较差时。我们的应用实例也凸显了处理混杂因素的重要性——两种未调整的方法都表明各治疗类别在结局方面存在显著差异,但使用三种调整方法中的任何一种时,这些类别差异并不显著。在对远端结局进行潜在类别回归时,应仔细考虑潜在的混杂因素;否则可能会导致效应估计出现显著偏差或推断错误。

相似文献

2
Latent Class Mediation: A Comparison of Six Approaches.潜在类别中介分析:六种方法的比较。
Multivariate Behav Res. 2021 Jul-Aug;56(4):543-557. doi: 10.1080/00273171.2020.1771674. Epub 2020 Jun 11.
5
Counterfactual Mediation Analysis with a Latent Class Exposure.潜类暴露的反事实中介分析
Multivariate Behav Res. 2024 Jul-Aug;59(4):818-840. doi: 10.1080/00273171.2024.2335394. Epub 2024 May 31.
10
Causal Inference in Latent Class Analysis.潜在类别分析中的因果推断
Struct Equ Modeling. 2013 Jul;20(3):361-383. doi: 10.1080/10705511.2013.797816.

引用本文的文献

2
Longitudinal Patterns of Material Hardship among US Families.美国家庭物质匮乏的纵向模式。
Soc Indic Res. 2022 Aug;163(1):341-370. doi: 10.1007/s11205-022-02896-8. Epub 2022 Mar 3.
6
Causal Inference in Radiomics: Framework, Mechanisms, and Algorithms.放射组学中的因果推断:框架、机制与算法
Front Neurosci. 2022 Jun 20;16:884708. doi: 10.3389/fnins.2022.884708. eCollection 2022.
10
Ensuring Causal, Not Casual, Inference.确保因果推断,而非关联推断。
Prev Sci. 2019 Apr;20(3):452-456. doi: 10.1007/s11121-018-0971-9.

本文引用的文献

1
Causal Inference in Latent Class Analysis.潜在类别分析中的因果推断
Struct Equ Modeling. 2013 Jul;20(3):361-383. doi: 10.1080/10705511.2013.797816.
5
PREDICTING LATENT CLASS SCORES FOR SUBSEQUENT ANALYSIS.预测潜在类别分数以供后续分析。
Psychometrika. 2012 Apr 1;77(2):244-262. doi: 10.1007/s11336-012-9248-6.
9
Constructing inverse probability weights for marginal structural models.构建边际结构模型的逆概率权重。
Am J Epidemiol. 2008 Sep 15;168(6):656-64. doi: 10.1093/aje/kwn164. Epub 2008 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验