Dziak John J, Bray Bethany C, Zhang Jieting, Zhang Minqiang, Lanza Stephanie T
The Methodology Center, The Pennsylvania State University, University Park, PA, USA.
College of Psychology and Sociology, Shenzhen University, Guangdong, China.
Methodology (Gott). 2016 Oct;12(4):107-116. doi: 10.1027/1614-2241/a000114. Epub 2016 Dec 5.
Several approaches are available for estimating the relationship of latent class membership to distal outcomes in latent profile analysis (LPA). A three-step approach is commonly used, but has problems with estimation bias and confidence interval coverage. Proposed improvements include the correction method of Bolck, Croon, and Hagenaars (BCH; 2004), Vermunt's (2010) maximum likelihood (ML) approach, and the inclusive three-step approach of Bray, Lanza, & Tan (2015). These methods have been studied in the related case of latent class analysis (LCA) with categorical indicators, but not as well studied for LPA with continuous indicators. We investigated the performance of these approaches in LPA with normally distributed indicators, under different conditions of distal outcome distribution, class measurement quality, relative latent class size, and strength of association between latent class and the distal outcome. The modified BCH implemented in Latent GOLD had excellent performance. The maximum likelihood and inclusive approaches were not robust to violations of distributional assumptions. These findings broadly agree with and extend the results presented by Bakk and Vermunt (2016) in the context of LCA with categorical indicators.
在潜在剖面分析(LPA)中,有几种方法可用于估计潜在类别成员资格与远端结果之间的关系。常用的三步法存在估计偏差和置信区间覆盖方面的问题。提出的改进方法包括博尔克、克龙和哈格纳尔斯(BCH;2004)的校正方法、弗蒙特(2010)的最大似然(ML)方法以及布雷、兰扎和谭(2015)的包容性三步法。这些方法已在具有分类指标的潜在类别分析(LCA)相关案例中进行了研究,但对于具有连续指标的LPA研究较少。我们研究了这些方法在具有正态分布指标的LPA中的性能,考察了远端结果分布、类别测量质量、相对潜在类别大小以及潜在类别与远端结果之间关联强度的不同条件。在Latent GOLD中实现的改进版BCH表现出色。最大似然法和包容性方法对分布假设的违反不具有稳健性。这些发现与巴克和弗蒙特(2016)在具有分类指标的LCA背景下呈现的结果大致一致并有所扩展。