Suppr超能文献

确保因果推断,而非关联推断。

Ensuring Causal, Not Casual, Inference.

机构信息

Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 North Broadway, Baltimore, MD, 21205, USA.

出版信息

Prev Sci. 2019 Apr;20(3):452-456. doi: 10.1007/s11121-018-0971-9.

Abstract

With innovation in causal inference methods and a rise in non-experimental data availability, a growing number of prevention researchers and advocates are thinking about causal inference. In this commentary, we discuss the current state of science as it relates to causal inference in prevention research, and reflect on key assumptions of these methods. We review challenges associated with the use of causal inference methodology, as well as considerations for hoping to integrate causal inference methods into their research. In short, this commentary addresses the key concepts of causal inference and suggests a greater emphasis on thoughtfully designed studies (to avoid the need for strong and potentially untestable assumptions) combined with analyses of sensitivity to those assumptions.

摘要

随着因果推理方法的创新和非实验数据可用性的提高,越来越多的预防研究人员和倡导者开始思考因果推理。在这篇评论中,我们讨论了与预防研究中的因果推理相关的科学现状,并反思了这些方法的关键假设。我们回顾了使用因果推理方法所面临的挑战,以及将因果推理方法纳入其研究的考虑因素。简而言之,本评论探讨了因果推理的关键概念,并建议更加强调精心设计的研究(以避免对强假设和潜在未经检验的假设的需要),同时结合对这些假设的敏感性分析。

相似文献

1
Ensuring Causal, Not Casual, Inference.确保因果推断,而非关联推断。
Prev Sci. 2019 Apr;20(3):452-456. doi: 10.1007/s11121-018-0971-9.
4
Designing Difference in Difference Studies: Best Practices for Public Health Policy Research.设计双重差分研究:公共卫生政策研究的最佳实践。
Annu Rev Public Health. 2018 Apr 1;39:453-469. doi: 10.1146/annurev-publhealth-040617-013507. Epub 2018 Jan 12.
7
The Assumptions of Direction Dependence Analysis.方向依存性分析的假设。
Multivariate Behav Res. 2020 Jul-Aug;55(4):516-522. doi: 10.1080/00273171.2019.1608800. Epub 2019 Jun 19.
9
A refreshing account of principal stratification.对主分层的清晰阐述。
Int J Biostat. 2012;8(1). doi: 10.1515/1557-4679.1380.

引用本文的文献

1
Target Trial Emulation for Evaluating Health Policy.目标临床试验模拟评估卫生政策。
Ann Intern Med. 2024 Nov;177(11):1530-1538. doi: 10.7326/M23-2440. Epub 2024 Oct 8.
5
A Unification of Mediator, Confounder, and Collider Effects.中介效应、混杂效应和共发效应的统一
Prev Sci. 2021 Nov;22(8):1185-1193. doi: 10.1007/s11121-021-01268-x. Epub 2021 Jun 23.

本文引用的文献

3
Sensitivity Analysis in Observational Research: Introducing the E-Value.观察性研究中的敏感性分析:引入 E 值。
Ann Intern Med. 2017 Aug 15;167(4):268-274. doi: 10.7326/M16-2607. Epub 2017 Jul 11.
9
Assessing the sensitivity of methods for estimating principal causal effects.评估估计主要因果效应方法的敏感性。
Stat Methods Med Res. 2015 Dec;24(6):657-74. doi: 10.1177/0962280211421840. Epub 2011 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验