Jiang Wenwen, Lustig Michael, Larson Peder E Z
UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.
Magn Reson Med. 2016 Jan;75(1):19-31. doi: 10.1002/mrm.25577. Epub 2014 Dec 22.
To develop a robust and rapid imaging technique for hyperpolarized (13)C MR Spectroscopic Imaging and investigate its performance.
A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized (13)C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on (13)C phantoms and in vivo animal hyperpolarized (13)C MR Spectroscopic Imaging studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented.
The concentric rings MR Spectroscopic Imaging trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging. It provides sufficient spectral bandwidth with relatively high efficiency compared to echo-planar spectroscopic imaging and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to echo-planar spectroscopic imaging. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized (13)C in vivo study.
The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized (13)C MR Spectroscopic Imaging.
开发一种用于超极化(13)C磁共振波谱成像的强大且快速的成像技术,并研究其性能。
提出一种具有恒定角速度的同心环读出轨迹用于超极化(13)C波谱成像,并分析其特性。针对几种成像场景进行了设计权衡的定量分析。首次将同心环应用于(13)C体模以及体内动物超极化(13)C磁共振波谱成像研究,以证明该方法的可行性。最后,展示了一项并行成像加速同心环研究。
与回波平面波谱成像相比,同心环磁共振波谱成像轨迹具有采集时间节省的优势。与回波平面波谱成像和螺旋技术相比,它能以相对较高的效率提供足够的谱带宽。体模和体内动物研究表明,与回波平面波谱成像相比,扫描时间减半且脉动流伪影减少,图像质量良好。在g因子模拟中,并行成像加速同心环比笛卡尔采样显示出优势,并且在超极化(13)C体内研究中展示了无混叠的图像质量。
同心环轨迹是一种强大且快速的成像技术,非常符合超极化(13)C磁共振波谱成像的速度、带宽和分辨率要求。