Department of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland.
University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland; International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, Zurich, Switzerland.
Neuroimage. 2015 Mar;108:95-109. doi: 10.1016/j.neuroimage.2014.12.035. Epub 2014 Dec 19.
FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power.
FreeSurfer 是一种自动、无创地量化皮质和皮质下脑解剖结构的工具。先前的研究报告了在相对较小的样本中或仅选择脑解剖结构的一个方面的可靠性和统计功效分析。在这里,我们在一个健康老年人(64 岁以上)的大样本(N=189)中研究了皮质厚度、表面积、体积和皮质下结构体积的可靠性和统计功效。皮质和皮质下参数的可靠性(组内相关系数)通常较高(皮质:ICC>0.87,皮质下:ICC>0.95)。基于表面的平滑增加了皮质厚度图的可靠性,而降低了皮质表面积和体积的可靠性。尽管如此,所有措施的统计功效都受益于平滑。当旨在检测组间 10%的差异时,为了在整个皮质上具有足够的功效测试效果所需的受试者数量因皮质测量值而异(皮质厚度:N=39,表面积:N=21,体积:N=81;10mm 平滑,功率=0.8,α=0.05)。对于皮质下区域,根据区域的不同,这个数量在 16 到 76 个之间。我们还展示了个体内设计相对于个体间设计的优势。此外,我们公开提供了一个工具,允许研究人员进行先验功效分析和灵敏度分析,以帮助评估先前发表的研究,并设计具有足够统计功效的未来研究。