Beare Richard, Ball Gareth, Yang Joseph Yuan-Mou, Moran Chris, Srikanth Velandai, Seal Marc
Developmental Imaging, Murdoch Children's Research Institute, Australia.
Monash University, Academic Unit, Peninsula Clinical School, Central Clinical School, Melbourne, Victoria, Australia.
Neuroimage Rep. 2021 Nov 29;1(4):100066. doi: 10.1016/j.ynirp.2021.100066. eCollection 2021 Dec.
Longitudinal MRI analysis is essential to accurately describe neuroanatomical changes over time. Loss of participants to followup (dropout) in longitudinal studies is inevitable and can lead to great difficulty in interpretation of statistical results if dropout is correlated with a study outcome or exposure. Beyond this, technical aspects of longitudinal MRI analysis require specialised processing pipelines to improve reliability while avoiding bias towards individual timepoints. In this article we test whether there is an additional problem that must be considered in longitudinal imaging studies, namely whether dropout has an impact on the function of FreeSurfer, a popular software pipeline used to estimate important structural brain metrics. We find that the number of acquisitions available per individual can impact the estimation of cortical thickness and brain volume using the FreeSurfer longitudinal pipeline, and can induce group differences in brain metrics. The effect on trajectories of brain metrics is smaller than the effect on brain metrics.
纵向磁共振成像(MRI)分析对于准确描述神经解剖结构随时间的变化至关重要。在纵向研究中,参与者失访(退出)是不可避免的,如果失访与研究结果或暴露因素相关,可能会给统计结果的解释带来很大困难。除此之外,纵向MRI分析的技术层面需要专门的处理流程,以提高可靠性,同时避免偏向于个别时间点。在本文中,我们测试了纵向成像研究中是否存在另一个必须考虑的问题,即失访是否会影响FreeSurfer的功能,FreeSurfer是一种用于估计重要脑结构指标的常用软件流程。我们发现,使用FreeSurfer纵向流程时,每个人可用的采集次数会影响皮质厚度和脑容量的估计,并可能在脑指标上引起组间差异。对脑指标轨迹的影响小于对脑指标的影响。