Suppr超能文献

利用全外显子组测序数据估计拷贝数基因型的组合方法。

Combinatorial approach to estimate copy number genotype using whole-exome sequencing data.

作者信息

Hwang Mi Yeong, Moon Sanghoon, Heo Lyong, Kim Young Jin, Oh Ji Hee, Kim Yeon-Jung, Kim Yun Kyoung, Lee Juyoung, Han Bok-Ghee, Kim Bong-Jo

机构信息

Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea.

Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, 361-951, Republic of Korea.

出版信息

Genomics. 2015 Mar;105(3):145-9. doi: 10.1016/j.ygeno.2014.12.003. Epub 2014 Dec 20.

Abstract

Copy number variations (CNVs) are known risk factors in complex diseases. Array-based approaches have been widely used to detect CNVs, but limitations of array-based CNV detection methods, such as noisy signal and low resolution, have hindered detection of small CNVs. Recently, the development of next-generation sequencing techniques has increased rapidly owing to declines in cost. Particularly, whole-exome sequencing has proved useful for finding causal genes and variants in complex diseases. Because gene copy number may affect expression, CNV genotyping can be very valuable in disease association studies. However, almost all current CNV detection tools consider only two types of CNV genotypes. In this study, we propose a CNV genotype estimation approach using a combination of existing methods. Our approach was comprehensively compared with the customized Agilent array-comparative genomic hybridization. We found that our genotyping approach proved to be accurate, and reproducible, suggesting that it can complement existing CNV genotyping methods.

摘要

拷贝数变异(CNV)是复杂疾病中已知的风险因素。基于芯片的方法已被广泛用于检测CNV,但基于芯片的CNV检测方法存在局限性,如信号噪声和分辨率低,这阻碍了小CNV的检测。近年来,由于成本下降,下一代测序技术发展迅速。特别是,全外显子组测序已被证明对发现复杂疾病中的致病基因和变异很有用。由于基因拷贝数可能影响表达,CNV基因分型在疾病关联研究中可能非常有价值。然而,几乎所有当前的CNV检测工具只考虑两种类型的CNV基因型。在本研究中,我们提出了一种使用现有方法组合的CNV基因型估计方法。我们的方法与定制的安捷伦芯片比较基因组杂交进行了全面比较。我们发现我们的基因分型方法被证明是准确且可重复的,这表明它可以补充现有的CNV基因分型方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验