Stolwijk Judith A, Matrougui Khalid, Renken Christian W, Trebak Mohamed
The SUNY College of Nanoscale Science and Engineering (CNSE), SUNY Polytechnic Institute, State University of New York, 257 Fuller Rd., Albany, NY, 12203, USA.
Applied BioPhysics Inc., Troy, NY, USA.
Pflugers Arch. 2015 Oct;467(10):2193-218. doi: 10.1007/s00424-014-1674-0. Epub 2014 Dec 24.
The past 20 years has seen significant growth in using impedance-based assays to understand the molecular underpinning of endothelial and epithelial barrier function in response to physiological agonists and pharmacological and toxicological compounds. Most studies on barrier function use G protein-coupled receptor (GPCR) agonists which couple to fast and transient changes in barrier properties. The power of impedance-based techniques such as electric cell-substrate impedance sensing (ECIS) resides in its ability to detect minute changes in cell layer integrity label-free and in real-time ranging from seconds to days. We provide a comprehensive overview of the biophysical principles, applications, and recent developments in impedance-based methodologies. Despite extensive application of impedance analysis in endothelial barrier research, little attention has been paid to data analysis and critical experimental variables, which are both essential for signal stability and reproducibility. We describe the rationale behind common ECIS data presentation and interpretation and illustrate practical guidelines to improve signal intensity by adapting technical parameters such as electrode layout, monitoring frequency, or parameter (resistance versus impedance magnitude). Moreover, we discuss the impact of experimental parameters, including cell source, liquid handling, and agonist preparation on signal intensity and kinetics. Our discussions are supported by experimental data obtained from human microvascular endothelial cells challenged with three GPCR agonists, thrombin, histamine, and sphingosine-1-phosphate.
在过去20年里,基于阻抗的检测方法在理解内皮细胞和上皮细胞屏障功能的分子基础以应对生理激动剂、药理和毒理化合物方面取得了显著进展。大多数关于屏障功能的研究使用与屏障特性快速且短暂变化偶联的G蛋白偶联受体(GPCR)激动剂。基于阻抗的技术,如电场细胞基质阻抗传感(ECIS),其强大之处在于能够无标记且实时地检测细胞层完整性从秒到天的微小变化。我们全面概述了基于阻抗的方法的生物物理原理、应用和最新进展。尽管阻抗分析在内皮屏障研究中得到了广泛应用,但对数据分析和关键实验变量的关注却很少,而这两者对于信号稳定性和可重复性都是至关重要的。我们描述了常见ECIS数据呈现和解释背后的原理,并举例说明了通过调整技术参数(如电极布局、监测频率或参数(电阻与阻抗幅值))来提高信号强度的实用指南。此外,我们还讨论了实验参数,包括细胞来源、液体处理和激动剂制备对信号强度和动力学的影响。我们的讨论得到了从用人微血管内皮细胞分别用三种GPCR激动剂(凝血酶、组胺和1 -磷酸鞘氨醇)刺激后获得的实验数据的支持。