Venz Alessandra, Duckert Bastien, Lagae Liesbet, Takalloo Saeedeh Ebrahimi, Braeken Dries
Biophysics Department, KU Leuven, Leuven, Belgium.
imec, Leuven, Belgium.
Sci Rep. 2025 Jan 10;15(1):1592. doi: 10.1038/s41598-025-85783-9.
Epithelial tissues in vitro undergo dynamic changes while differentiating heterogeneously on the culture substrate. This gives rise to diverse cellular arrangements which are undistinguished by conventional analysis approaches, such as transepithelial electrical resistance measurement or permeability assays. In this context, solid substrate-based systems with integrated electrodes and electrochemical impedance monitoring capability can address the limited spatiotemporal resolution of traditional porous membrane-based methods. This label-free technique facilitates local, continuous, long-term analysis of tissue barrier properties for organ-on-chip applications. Increasing spatial resolution requires small electrodes arranged in a dense array, known as high-density microelectrode arrays (HD-MEAs). Integrated with Complementary Metal Oxide Semiconductor (CMOS) technology for multiplexing and rapid impedance measurements, HD-MEAs can enable high spatiotemporal resolution assessments of epithelial tissues. Here, we used 16,384 CMOS-integrated HD-MEA chip with subcellular-sized electrodes (8 μm diameter, 15 μm pitch, patterned in 16 clusters each consisting of 1024 electrodes in a 32 × 32 matrix) and impedance sensing capability to monitor dynamic evolution of Caco-2 cells, such as their proliferation, barrier formation, and 3D structure development on the chip. Changes in impedance at the selected frequency of 1 kHz (|Z|) enabled monitoring and analyzing the life cycle of Caco-2 cells grown on the HD-MEA chips (up to + 453% change after 7 days in culture). The |Z| maps of proliferating Caco-2 cells and the differentiating epithelial tissue developing 3D domes aligned with the corresponding optical images at cellular resolution, which demonstrates the capability of the chip in tracking the dynamic heterogeneity of Caco-2 tissues in a label free and real-time fashion. Importantly, |Z| maps acquired during chemically induced barrier disruption showed electrodes covered with 3D cell domes experienced a stronger decrease in impedance than those covered with adherent cells (-41% ± sd 10% against -16% ± sd 10%, respectively). This method could thus, in principle, enable detection of tissue barrier disrupting and modifying agents with higher specificity. Epithelial barrier function assays benefit from using HD-MEA impedance sensors due to their increased informativity and resolution, which will be of great value in future organ-on-chip platforms.
体外上皮组织在培养底物上异质性分化时会发生动态变化。这会产生多种细胞排列方式,而传统分析方法(如跨上皮电阻测量或通透性测定)无法区分这些排列方式。在这种情况下,具有集成电极和电化学阻抗监测能力的基于固体底物的系统可以解决传统基于多孔膜的方法在时空分辨率方面的局限性。这种无标记技术有助于对芯片上器官应用的组织屏障特性进行局部、连续、长期的分析。提高空间分辨率需要将小电极排列成密集阵列,即高密度微电极阵列(HD-MEA)。与互补金属氧化物半导体(CMOS)技术集成以实现多路复用和快速阻抗测量,HD-MEA能够对上上皮组织进行高时空分辨率评估。在这里,我们使用了具有亚细胞尺寸电极(直径8μm,间距15μm,以16个簇的形式排列,每个簇由1024个电极组成32×32矩阵)和阻抗传感能力的16384个CMOS集成HD-MEA芯片来监测Caco-2细胞的动态演变,例如它们在芯片上的增殖、屏障形成和三维结构发育。在选定的1kHz频率下阻抗的变化(|Z|)能够监测和分析在HD-MEA芯片上生长的Caco-2细胞的生命周期(培养7天后变化高达+453%)。增殖的Caco-2细胞和形成三维穹顶的分化上皮组织的|Z|图与细胞分辨率下的相应光学图像对齐,这证明了该芯片能够以无标记和实时的方式跟踪Caco-2组织的动态异质性。重要的是,在化学诱导的屏障破坏过程中获取的|Z|图显示,覆盖有三维细胞穹顶的电极的阻抗下降幅度比覆盖有贴壁细胞的电极更大(分别为-41%±标准差10%和-16%±标准差10%)。因此,从原理上讲,这种方法能够以更高的特异性检测破坏和改变组织屏障的试剂。上皮屏障功能测定受益于使用HD-MEA阻抗传感器,因为它们具有更高的信息量和分辨率,这在未来的芯片上器官平台中将具有巨大价值。