Suppr超能文献

AlkA对1,N(6)-乙烯腺嘌呤进行翻转和切除的动力学机制。

Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.

作者信息

Taylor Erin L, O'Brien Patrick J

机构信息

Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.

出版信息

Biochemistry. 2015 Jan 27;54(3):898-908. doi: 10.1021/bi501356x. Epub 2015 Jan 14.

Abstract

Escherichia coli 3-methyladenine DNA glycosylase II (AlkA), an adaptive response glycosylase with a broad substrate range, initiates base excision repair by flipping a lesion out of the DNA duplex and hydrolyzing the N-glycosidic bond. We used transient and steady state kinetics to determine the minimal mechanism for recognition and excision of 1,N(6)-ethenoadenine (εA) by AlkA. The natural fluorescence of this endogenously produced lesion allowed us to directly monitor the nucleotide flipping step. We found that AlkA rapidly and reversibly binds and flips out εA prior to N-glycosidic bond hydrolysis, which is the rate-limiting step of the reaction. The binding affinity of AlkA for the εA-DNA lesion is only 40-fold tighter than for a nonspecific site and 20-fold weaker than for the abasic DNA site. The mechanism of AlkA-catalyzed excision of εA was compared to that of the human alkyladenine DNA glycosylase (AAG), an independently evolved glycosylase that recognizes many of the same substrates. AlkA and AAG both catalyze N-glycosidic bond hydrolysis to release εA, and their overall rates of reaction are within 2-fold of each other. Nevertheless, we find dramatic differences in the kinetics and thermodynamics for binding to εA-DNA. AlkA catalyzes nucleotide flipping an order of magnitude faster than AAG; however, the equilibrium for flipping is almost 3 orders of magnitude more favorable for AAG than for AlkA. These results illustrate how enzymes that perform the same chemistry can use different substrate recognition strategies to effectively repair DNA damage.

摘要

大肠杆菌3-甲基腺嘌呤DNA糖基化酶II(AlkA)是一种具有广泛底物范围的适应性反应糖基化酶,它通过将损伤碱基从DNA双链中翻转出来并水解N-糖苷键来启动碱基切除修复。我们利用瞬态动力学和稳态动力学来确定AlkA识别和切除1,N(6)-乙烯腺嘌呤(εA)的最小机制。这种内源性产生的损伤碱基的天然荧光使我们能够直接监测核苷酸翻转步骤。我们发现,在N-糖苷键水解(该反应的限速步骤)之前,AlkA能快速且可逆地结合并翻转出εA。AlkA对εA-DNA损伤的结合亲和力仅比对非特异性位点强40倍,比对无碱基DNA位点弱20倍。将AlkA催化切除εA的机制与人类烷基腺嘌呤DNA糖基化酶(AAG)的机制进行了比较,AAG是一种独立进化的糖基化酶,能识别许多相同的底物。AlkA和AAG都催化N-糖苷键水解以释放εA,它们的总体反应速率相差不超过2倍。然而,我们发现它们与εA-DNA结合的动力学和热力学存在显著差异。AlkA催化核苷酸翻转的速度比AAG快一个数量级;然而,对于AAG来说,翻转的平衡比AlkA有利近3个数量级。这些结果说明了执行相同化学反应的酶如何利用不同的底物识别策略来有效修复DNA损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/504e/4310629/c24640dcc736/bi-2014-01356x_0007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验