Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA.
Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA.
Front Cell Neurosci. 2014 Dec 8;8:414. doi: 10.3389/fncel.2014.00414. eCollection 2014.
Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD.
最新估计表明,每 68 名儿童中就有 1 名受到自闭症谱系障碍 (ASD) 的影响。尽管几十年来的研究已经揭示了这些疾病的很多情况,但病理机制仍然未知。阻碍研究的是似乎无法将从分子、突触和细胞功能到影响感觉、交流、运动和认知活动的大脑大范围功能障碍的微观到宏观研究尺度上的研究结果整合起来。在这篇综述中,我们描述了专注于神经元回路功能的研究如何为确定 ASD 的常见神经生物学疾病机制提供独特的背景。我们讨论了最近在 ASD 受试者中进行的 EEG 和 MEG 研究如何反复显示在集合群体记录中(包括简单诱发相关电位潜伏期和特定频率子成分)的变化。由于这些与疾病相关的电生理异常在啮齿动物模型中得到了重现,因此研究这些模型中的回路差异可能可以了解 ASD 中发现的异常回路功能。然后,我们确定了新兴的体内和体外技术,重点介绍了这些分析如何描述回路功能障碍,并确定这些异常是否是异常临床电生理学的基础。动物模型中的这种回路水平研究可能有助于我们理解不同的遗传和环境风险如何产生 ASD 中发现的 EEG、MEG 和解剖异常的常见集合。