Suppr超能文献

自闭症谱系障碍和发育正常儿童脑电图特征的日常重测信度

Day-to-Day Test-Retest Reliability of EEG Profiles in Children With Autism Spectrum Disorder and Typical Development.

作者信息

Levin April R, Naples Adam J, Scheffler Aaron Wolfe, Webb Sara J, Shic Frederick, Sugar Catherine A, Murias Michael, Bernier Raphael A, Chawarska Katarzyna, Dawson Geraldine, Faja Susan, Jeste Shafali, Nelson Charles A, McPartland James C, Şentürk Damla

机构信息

Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

Child Study Center, School of Medicine, Yale University, New Haven, CT, United States.

出版信息

Front Integr Neurosci. 2020 Apr 30;14:21. doi: 10.3389/fnint.2020.00021. eCollection 2020.

Abstract

Biomarker development is currently a high priority in neurodevelopmental disorder research. For many types of biomarkers (particularly biomarkers of diagnosis), reliability over short periods is critically important. In the field of autism spectrum disorder (ASD), resting electroencephalography (EEG) power spectral densities (PSD) are well-studied for their potential as biomarkers. Classically, such data have been decomposed into pre-specified frequency bands (e.g., delta, theta, alpha, beta, and gamma). Recent technical advances, such as the Fitting Oscillations and One-Over-F (FOOOF) algorithm, allow for targeted characterization of the features that naturally emerge within an EEG PSD, permitting a more detailed characterization of the frequency band-agnostic shape of each individual's EEG PSD. Here, using two resting EEGs collected a median of 6 days apart from 22 children with ASD and 25 typically developing (TD) controls during the Feasibility Visit of the Autism Biomarkers Consortium for Clinical Trials, we estimate test-retest reliability based on the characterization of the PSD shape in two ways: (1) Using the FOOOF algorithm we estimate six parameters (offset, slope, number of peaks, and amplitude, center frequency and bandwidth of the largest alpha peak) that characterize the shape of the EEG PSD; and (2) using nonparametric functional data analyses, we decompose the shape of the EEG PSD into a reduced set of basis functions that characterize individual power spectrum shapes. We show that individuals exhibit idiosyncratic PSD signatures that are stable over recording sessions using both characterizations. Our data show that EEG activity from a brief 2-min recording provides an efficient window into characterizing brain activity at the single-subject level with desirable psychometric characteristics that persist across different analytical decomposition methods. This is a necessary step towards analytical validation of biomarkers based on the EEG PSD and provides insights into parameters of the PSD that offer short-term reliability (and thus promise as potential biomarkers of trait or diagnosis) vs. those that are more variable over the short term (and thus may index state or other rapidly dynamic measures of brain function). Future research should address the longer-term stability of the PSD, for purposes such as monitoring development or response to treatment.

摘要

生物标志物的开发目前是神经发育障碍研究中的一个高度优先事项。对于许多类型的生物标志物(尤其是诊断生物标志物)而言,短期内的可靠性至关重要。在自闭症谱系障碍(ASD)领域,静息脑电图(EEG)功率谱密度(PSD)作为生物标志物的潜力得到了充分研究。传统上,此类数据已被分解为预先指定的频段(例如,δ波、θ波、α波、β波和γ波)。最近的技术进步,如拟合振荡和1/F(FOOOF)算法,允许对EEG PSD中自然出现的特征进行有针对性的表征,从而更详细地描述每个人EEG PSD的与频段无关的形状。在此,我们使用在自闭症生物标志物临床试验联盟可行性访问期间从22名患有ASD的儿童和25名发育正常(TD)的对照中收集的间隔中位数为6天的两次静息EEG,以两种方式基于PSD形状特征估计重测可靠性:(1)使用FOOOF算法,我们估计六个参数(偏移、斜率、峰值数量、幅度、最大α波峰值的中心频率和带宽)来表征EEG PSD的形状;(2)使用非参数功能数据分析,我们将EEG PSD的形状分解为一组简化的基函数,这些基函数表征个体功率谱形状。我们表明,使用这两种表征方法,个体在记录期间均表现出独特且稳定的PSD特征。我们的数据表明,从简短两分钟记录中获得的EEG活动为在单受试者水平上表征脑活动提供了一个有效的窗口,具有理想的心理测量特征,且这些特征在不同的分析分解方法中均持续存在。这是基于EEG PSD对生物标志物进行分析验证的必要步骤,并为PSD的参数提供了见解,这些参数具有短期可靠性(因此有望作为特质或诊断的潜在生物标志物),而与那些在短期内变化更大的参数(因此可能指示状态或其他快速动态的脑功能测量指标)相对。未来的研究应针对PSD的长期稳定性,例如用于监测发育或对治疗的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58eb/7204836/2199c9e24a92/fnint-14-00021-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验