Suppr超能文献

三种Illumina文库构建方法对GC偏差和HLA基因型分型的影响。

Impact of three Illumina library construction methods on GC bias and HLA genotype calling.

作者信息

Lan James H, Yin Yuxin, Reed Elaine F, Moua Kevin, Thomas Kimberly, Zhang Qiuheng

机构信息

UCLA Immunogenetics Center, Department of Pathology & Laboratory Medicine, Los Angeles, CA, USA; University of British Columbia, Clinician Investigator Program, Vancouver, BC, Canada.

UCLA Immunogenetics Center, Department of Pathology & Laboratory Medicine, Los Angeles, CA, USA.

出版信息

Hum Immunol. 2015 Mar;76(2-3):166-75. doi: 10.1016/j.humimm.2014.12.016. Epub 2014 Dec 25.

Abstract

Next-generation sequencing (NGS) is increasingly recognized for its ability to overcome allele ambiguity and deliver high-resolution typing in the HLA system. Using this technology, non-uniform read distribution can impede the reliability of variant detection, which renders high-confidence genotype calling particularly difficult to achieve in the polymorphic HLA complex. Recently, library construction has been implicated as the dominant factor in instigating coverage bias. To study the impact of this phenomenon on HLA genotyping, we performed long-range PCR on 12 samples to amplify HLA-A, -B, -C, -DRB1, and -DQB1, and compared the relative contribution of three Illumina library construction methods (TruSeq Nano, Nextera, Nextera XT) in generating downstream bias. Here, we show high GC% to be a good predictor of low sequencing depth. Compared to standard TruSeq Nano, GC bias was more prominent in transposase-based protocols, particularly Nextera XT, likely through a combination of transposase insertion bias being coupled with a high number of PCR enrichment cycles. Importantly, our findings demonstrate non-uniform read depth can have a direct and negative impact on the robustness of HLA genotyping, which has clinical implications for users when choosing a library construction strategy that aims to balance cost and throughput with data quality.

摘要

下一代测序(NGS)因其能够克服等位基因模糊性并在HLA系统中提供高分辨率分型而日益受到认可。使用这项技术时,不均匀的读数分布会妨碍变异检测的可靠性,这使得在多态性HLA复合体中实现高可信度的基因型分型尤其困难。最近,文库构建被认为是引发覆盖偏差的主要因素。为了研究这种现象对HLA基因分型的影响,我们对12个样本进行了长程PCR,以扩增HLA-A、-B、-C、-DRB1和-DQB1,并比较了三种Illumina文库构建方法(TruSeq Nano、Nextera、Nextera XT)在产生下游偏差方面的相对贡献。在此,我们表明高GC%是低测序深度的良好预测指标。与标准的TruSeq Nano相比,基于转座酶的方案(特别是Nextera XT)中的GC偏差更为突出,这可能是由于转座酶插入偏差与大量PCR富集循环相结合所致。重要的是,我们的研究结果表明,不均匀的读数深度会对HLA基因分型的稳健性产生直接负面影响,这对于在选择旨在平衡成本、通量和数据质量的文库构建策略时的用户具有临床意义。

相似文献

引用本文的文献

6
Evaluating coverage bias in next-generation sequencing of Escherichia coli.评估大肠杆菌下一代测序中的覆盖偏差。
PLoS One. 2021 Jun 24;16(6):e0253440. doi: 10.1371/journal.pone.0253440. eCollection 2021.
8
Advances and opportunities in malaria population genomics.疟疾群体基因组学的进展与机遇
Nat Rev Genet. 2021 Aug;22(8):502-517. doi: 10.1038/s41576-021-00349-5. Epub 2021 Apr 8.

本文引用的文献

6
Generalized DNA barcode design based on Hamming codes.基于汉明码的通用 DNA 条形码设计。
PLoS One. 2012;7(5):e36852. doi: 10.1371/journal.pone.0036852. Epub 2012 May 17.
7
High-throughput, high-fidelity HLA genotyping with deep sequencing.高通量、高保真 HLA 基因分型与深度测序。
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8676-81. doi: 10.1073/pnas.1206614109. Epub 2012 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验