Irie Naoko, Weinberger Leehee, Tang Walfred W C, Kobayashi Toshihiro, Viukov Sergey, Manor Yair S, Dietmann Sabine, Hanna Jacob H, Surani M Azim
Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK.
The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
Cell. 2015 Jan 15;160(1-2):253-68. doi: 10.1016/j.cell.2014.12.013. Epub 2014 Dec 24.
Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information.
原始生殖细胞(PGC)的特化标志着全能状态的开始。然而,由于缺乏易于处理的实验模型,人类PGC(hPGC)特化的机制仍不清楚。在这里,我们展示了从具有生殖系能力的多能干细胞中诱导出hPGC样细胞(hPGCLC)。hPGCLC的特征与胚胎hPGC以及具有CD38细胞表面标志物的生殖系精原细胞瘤一致,这些共同定义了人类早期生殖系可能的发育进程。值得注意的是,SOX17是hPGC样细胞命运的关键调节因子,而BLIMP1在hPGCLC特化过程中抑制内胚层和其他体细胞基因。小鼠和人类PGC特化之间显著的机制差异可能归因于它们不同的胚胎发育和多能状态,这可能会影响其他早期细胞命运决定。我们为未来关于hPGCLC和hPGC中表观基因组重编程以实现全能性以及遗传和表观遗传信息传递的研究奠定了基础。