Suppr超能文献

无向图上神经网络的动力学。

Dynamics of neural networks over undirected graphs.

机构信息

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Santiago, Chile.

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.

出版信息

Neural Netw. 2015 Mar;63:156-69. doi: 10.1016/j.neunet.2014.10.013. Epub 2014 Dec 12.

Abstract

In this paper we study the dynamical behavior of neural networks such that their interconnections are the incidence matrix of an undirected finite graph G=(V,E) (i.e., the weights belong to {0,1}). The network may be updated synchronously (every node is updated at the same time), sequentially (nodes are updated one by one in a prescribed order) or in a block-sequential way (a mixture of the previous schemes). We characterize completely the attractors (fixed points or cycles). More precisely, we establish the convergence to fixed points related to a parameter α(G), taking into account the number of loops, edges, vertices as well as the minimum number of edges to remove from E in order to obtain a maximum bipartite graph. Roughly, α(G')<0 for any G' subgraph of G implies the convergence to fixed points. Otherwise, cycles appear. Actually, for very simple networks (majority functions updated in a block-sequential scheme such that each block is of minimum cardinality two) we exhibit cycles with non-polynomial periods.

摘要

在本文中,我们研究了神经网络的动态行为,使得它们的连接是无向有限图 G=(V,E)的关联矩阵(即权重属于{0,1})。网络可以进行同步更新(每个节点同时更新)、顺序更新(按照规定的顺序逐个更新节点)或块序更新(前两种方案的混合)。我们完全刻画了吸引子(固定点或周期)。更准确地说,我们建立了与参数α(G)相关的固定点的收敛性,考虑了回路、边、顶点的数量,以及为了得到最大二分图而从 E 中移除的最小边数。大致来说,对于 G 的任何子图 G',如果α(G')<0,则意味着收敛到固定点。否则,就会出现周期。实际上,对于非常简单的网络(例如,在块序更新方案中更新多数函数,使得每个块的最小基数为 2),我们会展示具有非多项式周期的周期。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验