Suppr超能文献

高阶神经网络的动力学与复杂性结果

Dynamical and complexity results for high order neural networks.

作者信息

Goles E, Matamala M

机构信息

Universidad de Chile, Facultad de Ciencias Físicas y Matématicas, Departamento de Ingeniería Matéatica, Santiago.

出版信息

Int J Neural Syst. 1994 Sep;5(3):241-52. doi: 10.1142/s0129065794000256.

Abstract

We present dynamical results concerning neural networks with high order arguments. More precisely, we study the family of block-sequential iteration of neural networks with polynomial arguments. In this context, we prove that, under a symmetric hypothesis, the sequential iteration is the only one of this family to converge to fixed points. The other iteration modes present a highly complex dynamical behavior: non-bounded cycles and simulation of arbitrary non-symmetric linear neural network. We also study a high order memory iteration scheme which accepts an energy functional and bounded cycles in the size of the memory steps.

摘要

我们给出了关于具有高阶自变量的神经网络的动力学结果。更确切地说,我们研究了具有多项式自变量的神经网络的块序列迭代族。在此背景下,我们证明了,在对称假设下,序列迭代是该族中唯一收敛到不动点的迭代方式。其他迭代模式呈现出高度复杂的动力学行为:无界循环以及对任意非对称线性神经网络的模拟。我们还研究了一种高阶记忆迭代方案,该方案接受一个能量泛函并且在记忆步长大小上存在有界循环。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验