IEEE Trans Cybern. 2015 Dec;45(12):2654-67. doi: 10.1109/TCYB.2014.2379174. Epub 2014 Dec 23.
Biometric systems use score normalization techniques and fusion rules to improve recognition performance. The large amount of research on score fusion for multimodal systems raises an important question: can we utilize the available information from unimodal systems more effectively? In this paper, we present a rank-based score normalization framework that addresses this problem. Specifically, our approach consists of three algorithms: 1) partition the matching scores into subsets and normalize each subset independently; 2) utilize the gallery versus gallery matching scores matrix (i.e., gallery-based information); and 3) dynamically augment the gallery in an online fashion. We invoke the theory of stochastic dominance along with results of prior research to demonstrate when and why our approach yields increased performance. Our framework: 1) can be used in conjunction with any score normalization technique and any fusion rule; 2) is amenable to parallel programming; and 3) is suitable for both verification and open-set identification. To assess the performance of our framework, we use the UHDB11 and FRGC v2 face datasets. Specifically, the statistical hypothesis tests performed illustrate that the performance of our framework improves as we increase the number of samples per subject. Furthermore, the corresponding statistical analysis demonstrates that increased separation between match and nonmatch scores is obtained for each probe. Besides the benefits and limitations highlighted by our experimental evaluation, results under optimal and pessimal conditions are also presented to offer better insights.
生物识别系统使用评分归一化技术和融合规则来提高识别性能。大量关于多模态系统评分融合的研究提出了一个重要问题:我们能否更有效地利用单模态系统中的可用信息?在本文中,我们提出了一种基于排序的评分归一化框架来解决这个问题。具体来说,我们的方法包括三个算法:1)将匹配分数划分为子集,并独立归一化每个子集;2)利用图库与图库匹配分数矩阵(即基于图库的信息);3)以在线方式动态扩充图库。我们调用随机优势理论以及先前研究的结果来证明我们的方法何时以及为何会产生更高的性能。我们的框架:1)可以与任何评分归一化技术和任何融合规则结合使用;2)适用于并行编程;3)适用于验证和开放式识别。为了评估我们框架的性能,我们使用了 UHDB11 和 FRGC v2 人脸数据集。具体来说,进行的统计假设检验表明,随着每个主体样本数量的增加,我们的框架性能得到提高。此外,相应的统计分析表明,对于每个探针,匹配分数和非匹配分数之间的分离度都得到了提高。除了我们的实验评估所强调的优点和局限性之外,还呈现了最优和最差条件下的结果,以提供更好的见解。