Suppr超能文献

采用秩级融合方法的多模态生物识别系统。

Multimodal biometric system using rank-level fusion approach.

作者信息

Monwar Md Maruf, Gavrilova Marina L

机构信息

Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4 Canada.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Aug;39(4):867-78. doi: 10.1109/TSMCB.2008.2009071. Epub 2009 Mar 24.

Abstract

In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

摘要

在许多实际应用中,单模态生物识别系统由于对噪声敏感、类内变异性、数据质量、非通用性以及其他因素,常常面临显著的局限性。在这种情况下,试图提高单个匹配器的性能可能不会被证明是非常有效的。多生物识别系统试图通过提供同一身份的多条证据来缓解其中一些问题。这些系统有助于实现使用单一生物识别指标可能无法达到的性能提升。本文提出了一种有效的融合方案,该方案基于秩级融合集成方法,结合多个领域专家提供的信息。所开发的多模态生物识别系统具有许多独特的特性,从利用主成分分析和费舍尔线性判别方法对单个匹配器(面部、耳朵和签名)进行身份认证,到利用新颖的秩级融合方法来整合从不同生物识别匹配器获得的结果。使用最高秩、博尔达计数和逻辑回归方法对单个匹配器的秩进行组合。结果表明,即使在数据质量较低的情况下,单个模态的融合也可以提高生物识别系统的整体性能。结论部分讨论了使用秩级融合的多生物识别设计及其在各种生物识别数据库上的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验