Reyes Nicholas L, Banks Glen B, Tsang Mark, Margineantu Daciana, Gu Haiwei, Djukovic Danijel, Chan Jacky, Torres Michelle, Liggitt H Denny, Hirenallur-S Dinesh K, Hockenbery David M, Raftery Daniel, Iritani Brian M
The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190;
Department of Neurology, University of Washington, Seattle, WA 98195;
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):424-9. doi: 10.1073/pnas.1413021112. Epub 2014 Dec 29.
Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.
哺乳动物的骨骼肌大致可分为两类不同的肌纤维,即I型“红色”慢肌纤维和II型“白色”快肌纤维,它们在收缩强度、代谢策略和疲劳易感性方面存在显著差异。每种纤维类型的相对比例对肥胖、糖尿病和肌肉萎缩症的易感性有重大影响。然而,控制纤维类型特化的分子因素仍未完全明确。在本研究中,我们描述了卵泡抑素相互作用蛋白-1(Fnip1)对纤维类型特化和代谢疾病易感性的控制。使用Fnip1基因敲除小鼠,我们发现Fnip1的缺失增加了I型纤维的比例,其特征是肌红蛋白增加、慢肌纤维标记物(肌球蛋白重链7(MyH7)、琥珀酸脱氢酶、肌钙蛋白I 1、肌钙蛋白C1、肌钙蛋白T1)、毛细血管密度和线粒体数量增加。培养的Fnip1基因敲除肌纤维具有更高的氧化能力,相对于野生型骨骼肌,分离的Fnip1基因敲除骨骼肌对收缩后疲劳更具抵抗力。生化分析显示,Fnip1基因敲除的骨骼肌中代谢传感器AMP激酶(AMPK)的激活增加,以及AMPK靶点和转录共激活因子PGC1α的表达增加。PGC1α的基因破坏挽救了Fnip1基因敲除小鼠中I型纤维标记物MyH7和肌红蛋白的正常水平。值得注意的是,Fnip1的缺失显著减轻了杜兴氏肌营养不良小鼠模型中的肌肉损伤。这些结果表明,Fnip1控制骨骼肌纤维类型特化,值得进一步研究以确定抑制Fnip1在肌肉萎缩症疾病中是否具有治疗潜力。